Patients with relapsed/refractory Burkitt's lymphoma (BL) have a dismal prognosis. Current research efforts aim to increase cure rates by identifying high‐risk patients in need of more intensive or novel therapy. The 8q24 chromosomal translocation of the c‐Myc gene, a main molecular marker of BL, is related to the metabolism by regulating phosphoribosyl pyrophosphate synthetase 2 (PRPS2). In our study, BL showed significant resistance to thiopurines. PRPS2 homologous isoenzyme, PRPS1, was demonstrated to play the main role in thiopurine resistance. c‐Myc did not have direct effects on thiopurine resistance in BL for only driving PRPS2. PRPS1 wild type (WT) showed different resistance to 6‐mercaptopurine (6‐mp) in different metabolic cells because it could be inhibited by adenosine diphosphate or guanosine diphosphate negative feedback. PRPS1 A190T mutant could dramatically increase thiopurine resistance in BL. The interim analysis of the Treatment Regimen for Children or Adolescent with mature B cell non‐Hodgkin's lymphoma in China (CCCG‐B‐NHL‐2015 study) confirms the value of high‐dose methotrexate (MTX) and cytarabine (ARA‐C) in high‐risk paediatric patients with BL. However, there remains a subgroup of patients with lactate dehydrogenase higher than four times of the normal value (4N) for whom novel treatments are needed. Notably, we found that the combination of thiopurines and the phosphoribosylglycinamide formyltransferase (GART) inhibitor lometrexol could serve as a therapeutic strategy to overcome thiopurine resistance in BL.
Li-Fraumeni syndrome is a kind of hereditary cancer predisposition syndromes, and is caused by TP53 gene mutation. Adrenocortical carcinoma (ACC) is commonly described as the most closely related tumor with this disease. Here, we present a case of a male infant with composite ACC and neuroblastoma who inherited a TP53 gene mutation from his mother, a 20-year-old carrier without any tumor to date. This TP53 gene mutation may be pathogenic and lead to composite malignancies of ACC and neuroblastoma.
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a templateindependent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT À have a worse prognosis. However, how TDT À promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT À patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT À T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.