In children with severe ARDS, our results do not demonstrate that ECMO-supported children have superior outcomes compared with non-ECMO-supported children. Definitive answers will require a rigorous multisite randomized controlled trial.
There is a growing interest in precision medicine where individual heterogeneity is incorporated into decision-making and treatments are tailored to individuals to provide better healthcare. One important aspect of precision medicine is the estimation of the optimal individualized treatment rule (ITR) that optimizes the expected outcome. Most methods developed for this purpose are restricted to the setting with two treatments, while clinical studies with more than two treatments are common in practice. In this work, we summarize methods to estimate the optimal ITR in the multi-arm setting and compare their performance in large-scale clinical trials via simulation studies. We then illustrate their utilities with a case study using the data from the INTERVAL trial, which randomly assigned over 20,000 male blood donors from England to one of the three inter-donation intervals (12-week, 10-week, and eight-week) over two years. We estimate the optimal individualized donation strategies under three different objectives. Our findings are fairly consistent across five different approaches that are applied: when we target the maximization of the total units of blood collected, almost all donors are assigned to the eight-week inter-donation interval, whereas if we aim at minimizing the low hemoglobin deferral rates, almost all donors are assigned to donate every 12 weeks. However, when the goal is to maximize the utility score that “discounts” the total units of blood collected by the incidences of low hemoglobin deferrals, we observe some heterogeneity in the optimal inter-donation interval across donors and the optimal donor assignment strategy is highly dependent on the trade-off parameter in the utility function.
SUMMARY:
Accurate estimation of HIV incidence rates is crucial for the monitoring of HIV epidemics, the evaluation of prevention programs, and the design of prevention studies. Traditional cohort approaches to measure HIV incidence require repeatedly testing large cohorts of HIV uninfected individuals with a HIV diagnostic test (e.g., enzyme-linked immunosorbent assay) for long periods of time to identify new infections, which can be prohibitively costly, time-consuming, and subject to loss to follow-up. Cross-sectional approaches based on the usual HIV diagnostic test and biomarkers of recent infection offer important advantages over standard cohort approaches, in terms of time, cost, and attrition. Cross-sectional samples usually consist of individuals from different communities. However, small sample sizes limit the ability to estimate community-specific incidence and existing methods typically ignore heterogeneity in incidence across communities. We propose a permutation test for the null hypothesis of no heterogeneity in incidence rates across communities, develop a random effects model to account for this heterogeneity and to estimate community-specific incidence, and provide one way to estimate the coefficient of variation. We evaluate the performance of the proposed methods through simulation studies and apply them to the data from the National Institute of Mental Health Project ACCEPT, a phase III randomized controlled HIV prevention trial in Sub-Saharan Africa, to estimate the overall and community-specific HIV incidence rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.