SUMMARY
Colitis results from breakdown of homeostasis between intestinal microbiota and the mucosal immune system, with both environmental and genetic influencing factors. Flagellin receptor TLR5-deficient mice (T5KO) display elevated intestinal pro-inflammatory gene expression and colitis with incomplete penetrance, providing a genetically sensitized system to study the contribution of microbiota to driving colitis. Both colitic and non-colitic T5KO exhibited transiently unstable microbiotas, with lasting differences in colitic T5KO while their non-colitic siblings stabilized their microbiotas to resemble wild-type mice. Transient high levels of Proteobacteria, especially Enterobacteria species including E. coli, observed in close proximity to the gut epithelium was a striking feature of colitic microbiota. A Crohn’s disease-associated E. coli strain induced chronic colitis in T5KO, which persisted well after the exogenously introduced bacterial species had been eliminated. Thus, an innate immune deficiency can result in unstable gut microbiota associated with low-grade inflammation and harboring Proteobacteria can drive and/or instigate chronic colitis.
Bacterial flagellin is a dominant innate immune activator of the intestine. Therefore, we examined the role of the intracellular flagellin receptor, NLRC4, in protecting the gut and/or driving inflammation. In accord with NLRC4 acting via transcription-independent pathways, loss of NLRC4 did not reduce the rapid robust changes in intestinal gene expression induced by flagellin administration. Loss of NLRC4 did not alter basal intestinal homeostasis nor predispose mice to development of colitis upon administration of an anti-IL-10R monoclonal antibody. However, epithelial injury induced by dextran sulfate sodium (DSS) in mice lacking NLRC4 resulted in more severe disease indicating a role for NLRC4 in protecting the gut. Moreover, loss of NLRC4 resulted in increased mortality in response to flagellate, but not aflagellate Salmonella infection. Thus, despite not being involved in rapid intestinal gene remodeling upon detection of flagellin, NLRC4-mediated inflammasome activation results in production of IL-1β and IL-18, two cytokines that protect mice from mucosal and systemic challenges.
Regardless of whether they harbour a colitogenic microbiota, loss of TLR5 predisposes mice to colitis triggered by immune dysregulation via an IL-1β-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.