Obesity-induced white adipose tissue (WAT) fibrosis is believed to accelerate WAT dysfunction. However, the cellular origin of WAT fibrosis remains unclear. Here, we show that adipocyte platelet-derived growth factor receptor-α-positive (PDGFRα) progenitors adopt a fibrogenic phenotype in obese mice prone to visceral WAT fibrosis. More specifically, a subset of PDGFRα cells with high CD9 expression (CD9) originates pro-fibrotic cells whereas their CD9 counterparts, committed to adipogenesis, are almost completely lost in the fibrotic WAT. PDGFRα pathway activation promotes a phenotypic shift toward PDGFRαCD9 fibrogenic cells, driving pathological remodeling and altering WAT function in obesity. These findings translated to human obesity as the frequency of CD9 progenitors in omental WAT (oWAT) correlates with oWAT fibrosis level, insulin-resistance severity, and type 2 diabetes. Collectively, our data demonstrate that in addition to representing a WAT adipogenic niche, different PDGFRα cell subsets modulate obesity-induced WAT fibrogenesis and are associated with loss of metabolic fitness.
scWAT stiffness was associated with tissue fibrosis, obesity, and diabetes-related traits. Noninvasive evaluation of scWAT stiffness might be useful in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.