This study investigated the penetration of chloride into surface-treated high-performance concrete and normal concrete in natural and accelerated environments. Both high-performance concrete and normal concrete were applied in a real port. Concrete specimens that were cast together with the concrete port were transported to the laboratory and subjected to wetting and drying cycles with NaCl solution. The chloride contents of the specimens in the laboratory and the in situ components were tested. The chloride diffusion coefficients and surface chloride contents were calculated based on Fick’s second law. The results show that high-performance concrete and surface treatment clearly slow the chloride penetration into the concrete both in the laboratory and in situ. The chloride contents on the surface and in the concrete in the components of the concrete port are higher during the summer than during the winter. The chloride penetration performance in the concrete of real structures cannot be inferred from its performance in specimens under artificial environments in the laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.