We have previously constructed an engineered anti-diabetic fusion protein using glucagon-like peptide-1 and the globular domain of adiponectin. Herein, we evaluated the therapeutic effects of this fusion protein (GAD) on high-fat diet (HFD)-fed ApoE(-/-) mice. The lipid-lowering effect of GAD was determined in C57BL/6 mice using a lipid tolerance test. The effects of GAD on HFD-induced glucose intolerance, atherosclerosis, and hepatic steatosis were evaluated in HFD-fed ApoE(-/-) mice using glucose tolerance test, histological examinations and real-time quantitative PCR. The anti-inflammation activity of GAD was assessed in vitro on macrophages. GAD improved lipid metabolism in C57BL/6 mice. GAD treatment alleviated glucose intolerance, reduced blood lipid level, and attenuated atherosclerotic lesion in HFD-fed ApoE(-/-) mice, which was associated with a repressed macrophage infiltration in the vessel wall. GAD treatment also blocked hepatic macrophage infiltration and prevented hepatic inflammation. GAD suppressed lipopolysaccharide-triggered inflammation responses on macrophages, which can be abolished by H89, an inhibitor of protein kinase A. These findings demonstrate that GAD is able to generate a variety of metabolic benefits in HFD-fed ApoE(-/-) mice and indicate that this engineered fusion protein is a promising lead structure for anti-atherosclerosis drug discovery.
Previously we constructed a fusion protein based on GLP-1 and globular adiponectin but unfortunately its yield was low because it was mainly expressed as inclusion bodies. Herein to optimize the soluble expression of this fusion protein we tried several fusion tag systems. Fusion tags, including GST-, Trx- and MBP-tag, greatly improved the soluble expression of the fusion protein. However, these tag-fusion proteins were aggregation-prone as judged by Native PAGE and gel filtration chromatography, and this aggregation reduced the specificity of enterokinase-mediated enzyme cleavage which was essential to remove the fusion tags. To improve the specificity of protein cleavage, we employed on-column cleavage for downstream purification. Finally using optimized expression followed by on-column cleavage, we obtained the product fusion protein with a yield of 1.2 mg per g wet bacterial cells which was 8-fold higher than before. This method improved the yield and simplified the process, and as a convenient method it can also be used for the preparation of other aggregation-prone proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.