Persistent Jak/Stat3 signal transduction plays a crucial role in tumorigenesis and immune development. Activated Jak/Stat3 signaling has been validated as a promising molecular target for cancer therapeutics discovery and development. Berbamine (BBM), a natural bis-benzylisoquinoline alkaloid, was identified from the traditional Chinese herbal medicine Berberis amurensis used for treatment of cancer patients. While BBM has been shown to have potent antitumor activities with low toxicity in various cancer types, the molecular mechanism of action of BBM remains largely unknown. Here, we determine the antitumor activities of thirteen synthetic berbamine derivatives (BBMDs) against human solid tumor cells. BBMD3, which is the most potent in this series of novel BBMDs, exhibits over 6-fold increase in biological activity compared to natural BBM. Moreover, BBMD3, directly inhibits Jak2 autophosphorylation kinase activity in vitro with IC50 = 0.69 μM. Autophosphorylation of Jak2 kinase at Tyr1007/1008 sites also was strongly inhibited in the range of 1 μM to 5 μM of BBMD3 in human melanoma cells at 4 h after treatment. Following inhibition of autophosphorylation of Jak2, BBMD3 blocked constitutive activation of downstream Stat3 signaling in melanoma cells. BBMD3 also down-regulated expression of the Stat3 target proteins Mcl-1 and Bcl-xL, associated with induction of apoptosis. In sum, our findings demonstrate that the novel berbamine derivative BBMD3 is an inhibitor of the Jak2/Stat3 signaling pathway, providing evidence for a molecular mechanism whereby BBMD3 exerts at least in part the apoptosis of human melanoma cells. In addition, BBMD3 represents a promising lead compound for development of new therapeutics for cancer treatment.
Quantitative single molecule localization microscopy (qSMLM) is a powerful approach to study in situ protein organization. However, uncertainty regarding the photophysical properties of fluorescent reporters can bias the interpretation of detected localizations and subsequent quantification. Furthermore, strategies to efficiently detect endogenous proteins are often constrained by label heterogeneity and reporter size. Here, a new surface assay for molecular isolation (SAMI) was developed for qSMLM and used to characterize photophysical properties of fluorescent proteins and dyes. SAMI-qSMLM afforded robust quantification. To efficiently detect endogenous proteins, we used fluorescent ligands that bind to a specific site on engineered antibody fragments. Both the density and nano-organization of membrane-bound epidermal growth factor receptors (EGFR, HER2, and HER3) were determined by a combination of SAMI, antibody engineering, and pair-correlation analysis. In breast cancer cell lines, we detected distinct differences in receptor density and nano-organization upon treatment with therapeutic agents. This new platform can improve molecular quantification and can be developed to study the local protein environment of intact cells.
Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.
The clinical application of siRNA is limited largely by the lack of efficient, cell-specific delivery systems. Antibodies are attractive delivery vehicles for targeted therapy due to their high specificity. In this study we describe the use of a humanized monoclonal antibody (mAb), hu3S193, against Lewis-Y (Ley), as a delivery vehicle for STAT3 siRNA. This mAb is rapidly internalized into Ley expressing cancer cells via antigen recognition, and when coupled to STAT3 siRNA, a potentially powerful molecularly targeted delivery agent is created. Selective silencing of STAT3 is associated with tumor suppression. Two hu3S193 based siRNA delivery systems using STAT3 siRNA as a prototype were developed and tested in Ley-positive cancer cells: (a) a covalent construct based on a reductive disulfide linker that is expected to undergo cleavage within cells and (b) a non-covalent construct based on (D-Arginine)9 (9r) modified hu3S193. Ley-specific binding and internalization of both the covalent and non-covalent constructs were confirmed by flow cytometry and confocal microscopy. Both the covalent and the non-covalent system led to efficient STAT3 silencing in Ley-positive cancer cells (A431), but not in Ley-negative cancer cells (MDA-MB-435). The covalent construct, however, required co-treatment with reagents such as chloroquine or 9r that facilitate the escape of the siRNA from endosomes to achieve significant gene silencing. The 9r modified non-covalent construct, induced ~70% STAT3 knockdown at sub-micromolar siRNA concentrations when used at an optimal vehicle-to-siRNA ratio of 5:1. The STAT3 knockdown also led to ~50% inhibition of cell proliferation of Ley-positive cells. Non-covalent linked STAT3 siRNA-hu3S193 has great promise for targeted knockdown of STAT3 in tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.