Alzheimer’s disease (AD) is associated with the accumulation and aggregation of amyloid in the brain. The cation channel TRPV2 may mediate the pathological changes in mild cognitive impairment. A high-affinity agonist of TRPV2 named cannabidiol is one of the candidate drugs for AD. However, the molecular mechanism of cannabidiol via TRPV2 in AD remains unknown. The present study investigated whether cannabidiol enhances the phagocytosis and clearance of microglial Aβ via the TRPV2 channel. We used a human dataset, mouse primary neuron and microglia cultures, and AD model mice to evaluate TRPV2 expression and the ability of microglial amyloid-β phagocytosis in vivo and in vitro. The results revealed that TRPV2 expression was reduced in the cortex and hippocampus of AD model mice and AD patients. Cannabidiol enhanced microglial amyloid-β phagocytosis through TRPV2 activation, which increased the mRNA expression of the phagocytosis-related receptors, but knockdown of TRPV2 or Trem2 rescued the expression. TRPV2-mediated effects were also dependent on PDK1/Akt signaling, a pathway in which autophagy was indispensable. Furthermore, cannabidiol treatment successfully attenuated neuroinflammation while simultaneously improving mitochondrial function and ATP production via TRPV2 activation. Therefore, TRPV2 is proposed as a potential therapeutic target in AD, while CBD is a promising drug candidate for AD.
Theanine is a non-proteinogenic amino acid found in the tea plant Camellia sinensis. At an elevated temperature (>90 °C), it released two major volatile compounds 1-ethyl-1,5-dihydro-2H-pyrrol-2-one and N-ethylsuccinimide. Other products were identified, including 10 pyrroles and 12 amides/imides. The formation of the two major compounds was proposed to be initiated by the deamination of theanine and through the intermediate α-keto acid. In the presence of glucose, the two major products and many other volatiles from theanine thermal degradation were accelerated and further Maillard reactions occurred. A total of 56 compounds were identified in the model system of theanine and glucose, including 12 amides/imides, 16 pyrazines, 16 pyrroles and other Nheterocycles, and 12 furans and other O-heterocycles. Although most of the reaction products were detected in tea leaves and in their aqueous extract with or without the addition of theanine under the same experiment conditions, imides and amides were considerably suppressed, left only minute amounts, or were even no longer detectable. Pyrazines and pyrroles were also shown at reduced concentrations as a result of the interaction with tea components but to a lesser extent. A total of 16 and 12 pyrazines were identified in the theanine/glucose reaction system and tea leaves/aqueous extract after roasting, respectively. The results indicated that pyrazines and other main volatiles in roasted tea leaves were formed from the Maillard reactions of the aqueous fraction of tea leaves. Theanine participated in the formation of pyrazines in tea leaves under roasting conditions.
Introduction: Hemorrhoidal disease is one of the most common and frequently occurring benign anorectal disorders, presented with bleeding and prolapsed, and surgery is the main and effective method for severe prolapsed hemorrhoids. Yet, the recurrence rate after procedure for prolapse and hemorrhoids (PPH) is significantly higher. To reduce the recurrence rate and protect the anus function, we try to carry out a randomized, controlled, prospective study to compare the efficacy and recurrence rate of tissue selecting technique (TST) with mega-window stapler (TST-MS) combined with anal canal epithelial preservation operation and PPH combined with external hemorrhoidectomy and inferior internal hemorrhoid ligation operation for the treatment of severe prolapsed hemorrhoids. Methods: This study is a single-center, evaluator-blinded, randomized, controlled clinical trial. Participants meet the inclusion and exclusion criteria in this RCT will be randomly divided into treatment group (TST-MS combined with anal canal epithelial preservation operation group) and control group (PPH combined with external hemorrhoidectomy and inferior internal hemorrhoid ligation operation) in a 1:1 ratio according to a computer-generated randomization list. The outcomes of recurrence, anal function, intraoperative variables, and postoperative complications will be recorded at different follow-ups. Conclusion: The findings of the study will help to explore the efficacy and recurrence rate of TST-MS combined with anal canal epithelial preservation operation on the treatment of severe prolapsed hemorrhoids. Trial registration: This study protocol was registered in open science framework (OSF). (Registration number: DOI 10.17605 / OSF.IO / 4JYNF).
Large-leaf yellow tea (LYT) is a yellow tea product with a specific aroma characteristic and is enjoyed with increasing enthusiasm in China. However, its key odorants are still unknown. In this study, 46 odorants in the headspace and vacuum-distillate of the tea infusion were identified via aroma extract dilution analysis. Sixteen compounds were newly found in LYT infusion. They were present in the highest flavor dilution factors together with 2-ethyl-3,5-dimethylpyrazine. All odorants were quantitated to evaluate their own odor activity values (OAVs). High OAVs were found for 2-methylbutanal (malty, 210), (E,E)-2,4-heptandienal (fatty/flowery, 170), 2-methylpropanal (malty, 120) and 2,3-diethyl-5-methylpyrazine (earthy/roasty, 110). An aroma recombinate consisting of 17 odorants (all OAVs ≥ 1) in an odorless nonvolatile LYT matrix mimicked the overall aroma of the original infusion, verifying the successful characterization of key aroma components in a LYT beverage. The knowledge of key odorants obtained showed potential for simplifying industrial flavor optimization of the LYT product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.