Android, the most popular mobile operating system, has attracted millions of users around the world. Meanwhile, the number of new Android malware instances has grown exponentially in recent years. On the one hand, existing Android malware detection systems have shown that distilling the program semantics into a graph representation and detecting malicious programs by conducting graph matching are able to achieve high accuracy on detecting Android malware. However, these traditional graph-based approaches always perform expensive program analysis and suffer from low scalability on malware detection. On the other hand, because of the high scalability of social network analysis, it has been applied to complete large-scale malware detection. However, the social-network-analysis-based method only considers simple semantic information (i.e., centrality) for achieving market-wide mobile malware scanning, which may limit the detection effectiveness when benign apps show some similar behaviors as malware.
In this article, we aim to combine the high accuracy of traditional graph-based method with the high scalability of social-network-analysis--based method for Android malware detection. Instead of using traditional heavyweight static analysis, we treat function call graphs of apps as complex social networks and apply social-network--based centrality analysis to unearth the central nodes within call graphs. After obtaining the central nodes, the average intimacies between sensitive API calls and central nodes are computed to represent the semantic features of the graphs. We implement our approach in a tool called
IntDroid
and evaluate it on a dataset of 3,988 benign samples and 4,265 malicious samples. Experimental results show that
IntDroid
is capable of detecting Android malware with an F-measure of 97.1% while maintaining a True-positive Rate of 99.1%. Although the scalability is not as fast as a social-network-analysis--based method (i.e.,
MalScan
), compared to a traditional graph-based method,
IntDroid
is more than six times faster than
MaMaDroid
. Moreover, in a corpus of apps collected from GooglePlay market,
IntDroid
is able to identify 28 zero-day malware that can evade detection of existing tools, one of which has been downloaded and installed by more than ten million users. This app has also been flagged as malware by six anti-virus scanners in VirusTotal, one of which is
Symantec Mobile Insight
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.