Molecular ruler surfactants, solvatochromic probes of solvent polarity, have been used to examine changes in solvent polarity across weakly associating liquid/liquid interfaces. The water/alkane interfaces were formed between an aqueous subphase and either cyclic (cyclohexane and methylcyclohexane) or linear (octane and hexadecane) alkanes. Resonance-enhanced second-harmonic generation was used to collect effective excitation spectra of species adsorbed to these interfaces. As surfactants lengthened, the surfactant probe sampled an increasingly nonpolar environment as evidenced by an excitation wavelength that shifted toward the alkane limit. Data suggest that all four water/alkane interfaces are molecularly sharp (<9 Å), but that differences in the solvent molecular structure alter the transition from aqueous to organic solvation across the interface. Polarity across two interfaces (cyclohexane and hexadecane) changes gradually over the distance spanned by ruler surfactants. In contrast, the transitions at the interfaces between water and methylcyclohexane and octane appear much more abrupt. These findings appear to correlate with each organic solvent's ability to pack and associated free volume. More free volume in the organic phase leads to a more abrupt water/alkane interface. Results are interpreted on the basis of recent molecular dynamics simulations examining polarity at different water/monolayer interfaces.
Solute partitioning across a variety of alkane/aqueous interfaces was examined as a function of solute and alkane solvent structure. Solutes include p-nitrophenol (PNP), 3,5-dimethyl-p-nitrophenol (3,5-DMPNP), and 2,6-dimethyl-p-nitrophenol (2,6-DMPNP), the latter two being isomers distinguished solely by the location of methyl substituents on the aromatic ring. The alkane solvents included cylohexane, methylcyclohexane, octane, and iso-octane (2,2,4-trimethylpentane). PNP partitioned preferentially into the water by factors as high as 160:1. The dimethyl isomers partitioned more equally between water and the different alkanes. 2,6-DMPNP showed a 3-fold greater affinity for the alkane phase than 3,5-DMPNP. Ab initio calculations were used to characterize the molecular and electronic structure of the three solutes and to quantify individual contributions to each solute's solvation energy in model aqueous and alkane phases. Differences between 2,6-DMPNP and 3,5-DMPNP partitioning are interpreted based on the ability of the methyl groups in 2,6-DMPNP to weaken hydrogen bonding between the phenol group and adjacent water molecules. This diminished solvation interaction reduces the barrier to solute migration into the nonpolar organic phase despite the fact that 2,6-DMPNP has a larger (calculated) permanent, ground-state dipole than 3,5-DMPNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.