This work aimed to investigate tumor-infiltrating immune cells (TIICs) and immune-associated genes in the tumor microenvironment of osteosarcoma. An algorithm known as ESTIMATE was applied for immune score assessment, and osteosarcoma cases were assigned to the high and low immune score groups. Immuneassociated genes between these groups were compared, and an optimal immune-related risk model was built by Cox regression analyses. The deconvolution algorithm (referred to as CIBERSORT) was applied to assess 22 TIICs for their amounts in the osteosarcoma microenvironment. Osteosarcoma cases with high immune score had significantly improved outcome (P<0.01). The proportions of naive B cells and M0 macrophages were significantly lower in high immune score tissues compared with the low immune score group (P<0.05), while the amounts of M1 macrophages, M2 macrophages, and resting dendritic cells were significantly higher (P<0.05). Important immune-associated genes were determined to generate a prognostic model by Cox regression analysis. Interestingly, cases with high risk score had poor outcome (P<0.01). The areas under the curve (AUC) for the risk model in predicting 1, 3 and 5-year survival were 0.634, 0.781, and 0.809, respectively. Gene set enrichment analysis suggested immunosuppression in high-risk osteosarcoma patients, in association with poor outcome.
Coordinate measuring machines (CMMs) play an important role in modern manufacturing and inspection technologies. However, the inspection process of a CMM is recognized as time-consuming work. The low efficiency of coordinate measuring machines has given rise to new inspection strategies and methods, including path optimization. This study describes the optimization of an inspection path on free-form surfaces using three different algorithms: an ant colony optimization algorithm, a genetic algorithm, and a particle swarm optimization algorithm. The optimized sequence of sampling points is obtained in MATLAB R2020b software and tested on a Leitz Reference HP Bridge Type Coordinate Measuring Machine produced by HEXAGON. This study compares the performance of the three algorithms in theoretical and practical conditions. The results demonstrate that the use of the three algorithms can result in a collision-free path being found automatically and reduce the inspection time. However, owing to the different optimization methodologies, the optimized processes and optimized times of the three algorithms, as well as the optimized paths, are different. The results indicate that the ant colony algorithm has better performance for the path optimization of free-form surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.