Caching and multicasting at base stations are two promising approaches to support massive content delivery over wireless networks. However, existing analysis and designs do not fully explore and exploit the potential advantages of the two approaches. In this paper, we consider the analysis and optimization of caching and multicasting in a large-scale cache-enabled wireless network. We propose a random caching and multicasting scheme with a design parameter. By carefully handling different types of interferers and adopting appropriate approximations, we derive a tractable expression for the successful transmission probability in the general region, utilizing tools from stochastic geometry. We also obtain a closed-form expression for the successful transmission probability in the high signal-to-noise ratio (SNR) and user density region. Then, we consider the successful transmission probability maximization, which is a very complex non-convex problem in general.Using optimization techniques, we develop an iterative numerical algorithm to obtain a local optimal caching and multicasting design in the general region. To reduce complexity and maintain superior performance, we also derive an asymptotically optimal caching and multicasting design in the asymptotic region, based on a two-step optimization framework. Finally, numerical simulations show that the asymptotically optimal design achieves a significant gain in successful transmission probability over some baseline schemes in the general region.
To enhance the multiplexing gain of two-receiver Multiple-Input-Single-Output Broadcast Channel with imperfect channel state information at the transmitter (CSIT), a class of Rate-Splitting (RS) approaches has been proposed recently, which divides one receiver's message into a common and a private part, and superposes the common message on top of Zero-Forcing precoded private messages. In this paper, with quantized CSIT, we study the ergodic sum rate of two schemes, namely RS-S and RS-ST, where the common message(s) are transmitted via a space and space-time design, respectively. Firstly, we upperbound the sum rate loss incurred by each scheme relative to Zero-Forcing Beamforming (ZFBF) with perfect CSIT. Secondly, we show that, to maintain a constant sum rate loss, RS-S scheme enables a feedback overhead reduction over ZFBF with quantized CSIT. Such reduction scales logarithmically with the constant rate loss at high Signal-to-Noise-Ratio (SNR). We also find that, compared to RS-S scheme, RS-ST scheme offers a further feedback overhead reduction that scales with the discrepancy between the feedback overhead employed by the two receivers when there are alternating receiver-specific feedback qualities. Finally, simulation results show that both schemes offer a significant SNR gain over conventional single-user/multiuser mode switching when the feedback overhead is fixed.The authors are with the Communication and Signal Processing
Heterogeneous networks (HetNets) with offloading is considered as an effective way to meet the high data rate demand of future wireless service. However, the offloaded users suffer from strong intertier interference, which reduces the benefits of offloading and is one of the main limiting factors of the system performance. In this paper, we investigate an interference nulling (IN) scheme in improving the system performance by carefully managing the inter-tier interference to the offloaded users in downlink two-tier HetNets with multi-antenna base stations. Utilizing tools from stochastic geometry, we first derive a tractable expression for the rate coverage probability of the IN scheme. Then, by studying its order, we obtain the optimal design parameter, i.e., the degrees of freedom that can be used for IN, to maximize the rate coverage probability. Finally, we analyze the rate coverage probabilities of the simple offloading scheme without interference management and the multi-antenna version of the almost blank subframes (ABS) scheme in 3GPP LTE, and compare the performance of the IN scheme with these two schemes. Both analytical and numerical results show that the IN scheme can achieve good performance gains over both of these two schemes, especially in the large antenna regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.