At present, islet cells transplantation was limited by the way in which islet cells are implanted into the body, their ability to adapt to the microenvironment and the maintenance time for relieving diabetic symptoms. In order to solve this problem, we made PDA-PLGA scaffold loaded with islet cells and used it for skeletal muscle transplantation to investigate its therapeutic effect in the treatment of diabetes. The PLGA scaffold was prepared by the electrospinning method, and modified by polydopamine coating. A rat diabetic model was established to evaluate the efficacy of PDA-PLGA scaffold loaded with RINm5f islet cells through skeletal muscle transplantation. The results showed that the PDA-PLGA scaffold has good biosafety performance. At the same time, transplantation of the stent to the skeletal muscle site had little effect on the serum biochemical indicators of rats, which was conducive to angiogenesis. The PDA-PLGA scaffold had no effect on the secretory function of pancreatic islet cells. The PDA-PLGA scaffold carrying RINm5f cells was transplanted into the skeletal muscle of type I diabetic rats. 1 week after the transplantation of the PDA-PLGA cell scaffold complex, the blood glucose of the treatment group was significantly lower than that of the model group (p < 0.001) and lasted for approximately 3 weeks, which further indicated the skeletal muscle transplantation site was a new choice for islet cell transplantation in the future.
Aim: This study explored whether abnormality in the inner mitochondrial membrane fusion protein optic atrophy 1 (Opa1) causes hepatic insulin resistance and whether berberine (BBR) can prevent hepatic insulin resistance through the SIRT1/Opa1 pathway. Method: High-fat diet (HFD)-fed mice and db/db mice were used as animal models to study hepatic insulin resistance in vivo . Insulin resistance, morphological changes, and mitochondrial injury of the liver were examined to explore the effects of BBR. SIRT1/Opa1 protein expressions were determined to confirm whether the signalling pathway was damaged in the model animals and involved in BBR treatment. A palmitate (PA)-induced hepatocyte insulin resistance model was established in HepG2 cells in vitro . Opa1 silencing and SIRT1 overexpression were induced to verify whether Opa1 abnormality causes hepatocyte insulin resistance and whether SIRT1 could improve this dysfunction. BBR treatment and SIRT1 silencing were employed to prove that BBR can prevent hepatic insulin resistance by activating the SIRT1/Opa1 pathway. Results: We found that Opa1 deficiency caused imbalance in mitochondrial fusion/fission and impaired insulin signalling in the HepG2 cells. SIRT1 and BBR overexpression ameliorated PA-induced insulin resistance, increased Opa1, and improved mitochondrial function. SIRT1 silencing could partly reverse the effects of BBR in the HepG2 cells. SIRT1 and Opa1 were downregulated in the animal models. BBR attenuated hepatic insulin resistance and enhanced SIRT1/Opa1 signalling in the the db/db mice. Conclusion: Opa1 silencing-mediated mitochondrial fusion/fission imbalance could lead to hepatocyte insulin resistance. BBR may improve hepatic insulin resistance by regulating the SIRT1/Opa1 pathway, and thus, it may be used to treat type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.