Low signal-to-noise ratio (SNR) infrared point target detection and tracking is crucial to study regarding infrared remote sensing. In the low-SNR images, the intensive noise will submerge targets. In this letter, a saliency-guided double-stage particle filter (SGDS-PF) formed by the searching particle filter (PF) and tracking PF is proposed to detect and track targets. Before the searching PF, to suppress noise and enhance targets, the single-frame and multi-frame target accumulation methods are introduced. Besides, the likelihood estimation filter and image block segmentation are proposed to extract the likelihood saliency and obtain proper proposal density. Guided by this proposal density, the searching PF detects potential targets efficiently. Then, with the result of the searching PF, the tracking PF is adopted to track and confirm the potential targets. Finally, the path of the real targets will be output. Compared with the existing methods, the SGDS-PF optimizes the proposal density for low-SNR images. Using a few accurate particles, the searching PF detects potential targets quickly and accurately. In addition, initialized by the searching PF, the tracking PF can keep tracking targets using very few particles even under intensive noise. Furthermore, the parameters have been selected appropriately through experiments. Extensive experimental results show that the SGDS-PF has an outstanding performance in tracking precision, tracking reliability, and time consumption. The SGDS-PF outperforms the other advanced methods.
Space-based target surveillance is important for aerospace safety. However, with the increasing complexity of the space environment, the stellar target and strong noise interference pose difficulties for space target detection. Simultaneously, it is hard to balance real-time processing with computational performance for the onboard processing platform owing to resource limitations. The heterogeneous multi-core architecture has corresponding processing capabilities, providing a hardware implementation platform with real-time and computational performance for space-based applications. This paper first developed a multi-stage joint detection and tracking model (MJDTM) for space targets in optical image sequences. This model combined an improved local contrast method and the Kalman filter to detect and track the potential targets and use differences in movement status to suppress the stellar targets. Then, a heterogeneous multi-core processing system based on a field-programmable gate array (FPGA) and digital signal processor (DSP) was established as the space-based image processing system. Finally, MJDTM was optimized and implemented on the above image processing system. The experiments conducted with simulated and actual image sequences examine the accuracy and efficiency of the MJDTM, which has a 95% detection probability while the false alarm rate is 10−4. According to the experimental results, the algorithm hardware implementation can detect targets in an image with 1024 × 1024 pixels in just 22.064 ms, which satisfies the real-time requirements of space-based surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.