Purpose: Tinnitus is a common but obscure auditory disease to be studied. This study will determine whether the connectivity features in electroencephalography (EEG) signals can be used as the biomarkers for an efficient and fast diagnosis method for chronic tinnitus.Methods: In this study, the resting-state EEG signals of tinnitus patients with different tinnitus locations were recorded. Four connectivity features [including the Phase-locking value (PLV), Phase lag index (PLI), Pearson correlation coefficient (PCC), and Transfer entropy (TE)] and two time-frequency domain features in the EEG signals were extracted, and four machine learning algorithms, included two support vector machine models (SVM), a multi-layer perception network (MLP) and a convolutional neural network (CNN), were used based on the selected features to classify different possible tinnitus sources.Results: Classification accuracy was highest when the SVM algorithm or the MLP algorithm was applied to the PCC feature sets, achieving final average classification accuracies of 99.42 or 99.1%, respectively. And based on the PLV feature, the classification result was also particularly good. And MLP ran the fastest, with an average computing time of only 4.2 s, which was more suitable than other methods when a real-time diagnosis was required.Conclusion: Connectivity features of the resting-state EEG signals could characterize the differentiation of tinnitus location. The connectivity features (PCC and PLV) were more suitable as the biomarkers for the objective diagnosing of tinnitus. And the results were helpful for clinicians in the initial diagnosis of tinnitus.
Artificial intelligence (AI) algorithms can provide actionable insights for clinical decision-making and managing chronic diseases. The treatment and management of complex chronic diseases, such as diabetes, stands to benefit from novel AI algorithms analyzing the frequent real-time streaming data and the occasional medical diagnostics and laboratory test results reported in electronic health records (EHR). Novel algorithms are needed to develop trustworthy, responsible, reliable, and robust AI techniques that can handle the imperfect and imbalanced data of EHRs and inconsistencies or discrepancies with free-living self-reported information. The challenges and applications of AI for two problems in the healthcare domain were explored in this work. First, we introduced novel AI algorithms for EHRs designed to be fair and unbiased while accommodating privacy concerns in predicting treatments and outcomes. Then, we studied the innovative approach of using machine learning to improve automated insulin delivery systems through analyzing real-time information from wearable devices and historical data to identify informative trends and patterns in free-living data. Application examples in the treatment of diabetes demonstrate the benefits of AI tools for medical and health informatics.
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings. Nevertheless, it suffers from the data-sparsity issue, which the cross-domain recommendation can alleviate. However, most prior works either jointly learn the source domain and target domain models, or require side-features. However, jointly training and side features would affect the prediction on the target domain as the learned embedding is dominated by the source domain containing bias information. Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation. We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder. Then, we transfer the pre-trained graph encoder to initialize the node embeddings on the target domain, which benefits the fine-tuning of the single domain recommender system on the target domain. The experimental results demonstrate the superiority of PCRec. Detailed analyses verify the superiority of PCRec in transferring information while avoiding biases from source domains.
Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn significant attention to developing effective algorithms to achieve fairness and good classification performance. Despite the great success of these fairness-aware machine learning models, most of the existing models require sensitive attributes to pre-process the data, regularize the model learning or post-process the prediction to have fair predictions. However, sensitive attributes are often incomplete or even unavailable due to privacy, legal or regulation restrictions. Though we lack the sensitive attribute for training a fair model in the target domain, there might exist a similar domain that has sensitive attributes. Thus, it is important to exploit auxiliary information from a similar domain to help improve fair classification in the target domain. Therefore, in this paper, we study a novel problem of exploring domain adaptation for fair classification. We propose a new framework that can learn to adapt the sensitive attributes from a source domain for fair classification in the target domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model for fair classification, even when no sensitive attributes are available in the target domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.