Sesame is a nutritional agricultural product with medicinal properties. Accurate determination of micronutrients is important for the improvement of sesame quality and nutrition assessments. Our previous study showed that 10 antioxidants—d-homoproline, vitamin B2, coniferyl aldehyde, hesperidin, phloretin, N-acetyl-l-leucine, l-hyoscyamine, ferulic acid, 5-methoxypsoralen, and 8-methoxypsoralen—in sesame were potential characteristic nutrients in sesame. Herein, simultaneous detection of 10 different types of antioxidants was developed by using ultrasound-assisted extraction coupled with liquid chromatography-tandem mass spectrometry (UAE-LC-MS/MS) with the help of response surface methodology. The significant variables and levels were screened and optimized by combining the single factor experiment, Plackett–Burman test, and Box–Behnken design. The optimal conditions for extraction of target antioxidants in sesame were methanol solution of 75.0%, liquid-to-material ratio of 20:1 (mL/g), extraction temperature of 50 °C, extraction power of 410.0 W, extraction time of 65 min. The total yield of targets was 21.74 μg/g under the optimized conditions. The mobile phase used was 0.1% formic acid in acetonitrile and 0.1% formic acid in water, and the column was a Thermo Syncronis C18 reverse phase column (100 mm × 2.1 mm, 3 μm). All targets required only one injection and could be quickly separated and assayed within 7 min. The limits of detection and limits of quantification for these 10 nutritional compounds ranged from 0.01 to 0.11 µg/kg and from 0.04 to 0.34 µg/kg, respectively. The validation results indicated that the method had reasonable linearity (R2 ≥ 0.9990), good recoveries (71.1%–118.3%), satisfactory intra-day precision (≤9.6%) and inter-day precision (≤12.9%), and negligible matrix effects (≤13.8%). This simultaneous quantification method was accurate, fast, and robust for the assessment of sesame nutrition.
Vitamin K1 is one of the important hydrophobic vitamins in fat-containing foods. Traditionally, lipase is employed in the determination of vitamin K1 to remove the lipids, which makes the detection complex, time-consuming, and insensitive. In this study, the determination of vitamin K1 in fat-containing foods was developed based on ultrasound-assisted extraction (UAE), solid-phase extraction (SPE) combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS). The optimal conditions for extraction of vitamin K1 were material–liquid ratio of 1:70 (g/mL), extraction temperature of 50 °C, extraction power of 700 W, extraction time of 50 min, material-wash fluid ratio of 1:60 (g/mL), and 8 mL of hexane/anhydrous ether (97:3, v/v) as the elution solvent. Then, vitamin K1 was analyzed on a ZORBAX SB-C18 column (50 mm × 2.1 mm, 1.8 μm) by gradient elution with water (0.01% formic acid) and methanol (0.01 formic acid + 2.5 mmol/L ammonium formate) as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.16 μg/kg, respectively. Calibration curve was linear over the range of 10–500 ng/mL (R2 > 0.9988). The recoveries at three spiked levels were between 80.9% and 119.1%. The validation and application indicated that the proposed method was simple and sensitive in determination of vitamin K1 in fat-containing foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.