Remote sensing retrieval is an important technology for studying water eutrophication. In this study, Guanting Reservoir with the main water supply function of Beijing was selected as the research object. Based on the measured data in 2016, 2017, and 2019, and Landsat-8 remote sensing images, the concentration and distribution of chlorophyll-a in the Guanting Reservoir were inversed. We analyzed the changes in chlorophyll-a concentration of the reservoir in Beijing and the reasons and effects. Although the concentration of chlorophyll-a in the Guanting Reservoir decreased gradually, it may still increase. The amount and stability of water storage, chlorophyll-a concentration of the supply water, and nitrogen and phosphorus concentration change are important factors affecting the chlorophyll-a concentration of the reservoir. We also found a strong correlation between the pixel values of adjacent reservoirs in the same image, so the chlorophyll-a estimation model can be applied to each other.
Climate change and human activities have an important impact on the changing environment, leading to significant changes in the basin water cycle process. The Jialing River Basin, the largest tributary of the upper Yangtze River, is selected as the study area. Three different rainfall datasets, the China Meteorological Assimilation Driving (CMAD) dataset, the Tropical Rainfall Measuring Mission data, and gauged observation data, were used as inputs for the MIKE System Hydrological European (MIKE SHE) model. By comparing the simulation results driven by various meteorological data, the applicability of the MIKE SHE model at four stations is evaluated, and the sensitivity and uncertainty of model parameters are analyzed. Meanwhile, the impact of large hydropower stations on the runoff of the Jialing River Basin is assessed, and the influence of human activities on the runoff change is determined. The future climate change of the watershed was analyzed by using the typical representative concentration pathway (RCP) 4.5 and RCP8.5 climate scenarios. Based on the MIKE SHE model, the runoff of the Jialing River Basin in the future climate scenario is predicted, and the corresponding response of the Jialing River Basin is analyzed quantitatively. The results show that the CMAD data-driven model has better Nash–Sutcliffe efficiency and correlation coefficient for each period. By analyzing the influence of hydropower station on the runoff process at the outlet of the basin, it is found that the hydropower station has a certain regulating effect on the runoff process at the outlet of the basin. In addition, the RCP4.5 scenario is more consistent with the future scenario, indicating that the Jialing River Basin will become colder and drier.
As a key factor in the water cycle and climate change, the quality of precipitation data directly affects the hydrological processes of the river basin. Although many precipitation products with high spatial and temporal resolutions are now widely used, it is meaningful and necessary to investigate and evaluate their merits and demerits in hydrological applications. In this study, two satellite-based precipitation products (Tropical Rainfall Measurement Mission, TRMM; Integrated Multi-satellite Retrievals for GPM, IMERG) and one reanalysis precipitation product (China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model, CMADS) are studied to compare their streamflow simulation performance in the Qujiang River Basin, China, using the SWAT model with gauged rainfall data as a reference. The main conclusions are as follows: (1) CMADS has stronger precipitation detection capabilities compared to gauged rainfall, while TRMM results in the most obvious overestimation in the four sub-basins. (2) In daily and monthly streamflow simulations, CMADS + SWAT mode offers the best performance. CMADS and IMERG can provide high quality precipitation data for data-scarce areas, and IMERG can effectively avoid the overestimation of streamflow caused by TRMM, especially on a daily scale. (3) The runoff projections of the three modes under RCP (Representative Concentration Pathway) 4.5 was higher than that of RCP 8.5 on the whole. IMERG + SWAT overestimates the surface water resources of the basin compared to CMADS + SWAT, while TRMM + SWAT provides the most stable uncertainty. These findings contribute to the comparison of the differences among the three precipitation products and provides a reference for the selection of precipitation data in similar regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.