Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Porcine deltacoronavirus (PDCoV) is an emerging porcine intestinal coronavirus in recent years, which mainly causes different degrees of vomiting and diarrhea in piglets and has caused great harm to the swine husbandry worldwide since its report. Selenium is an essential trace element for organisms and has been demonstrated to have antiviral effects. In this study, pig kidney epithelial (LLC-PK) cells were used to study the antiviral activity of selenomethionine (Se-Met) (2, 4, 8, and 16 μM) against PDCoV by detecting the replication of the virus, the expression of the mitochondrial antiviral signal protein (MAVS) protein, and the phosphorylation of interferon regulatory factor-3 (IRF-3), IFN-α, and IFN-β, and the changes in glutathione content, glutathione peroxidase, superoxide dismutase activity, and hydrogen peroxide content in the cells. The results showed that Se-Met at higher than physiological concentrations (16 μM) could significantly inhibit the replication of PDCoV in LLC-PK cells and enhance the expression of MAVS protein and the phosphorylation of IRF-3. In addition, Se-Met also improved the intracellular production of IFNα/β and antioxidant capacity with increasing doses. These data suggest that the availability of selenium through selenomethionine supports the antiviral response in porcine kidney cells, and the specific mechanism is attributed to the improved cellular antioxidant capacity and activation of the MAVS pathway by Se-Met.
This study was conducted to investigate the relationship between changes in intestinal aquaporins (AQPs) in piglets fed diets with different protein levels and nutritional diarrhoea in piglets. Briefly, 96 weaned piglets were randomly divided into four groups fed diets with crude protein (CP) levels of 18%, 20%, 22% and 24%.The small intestines and colons of the weaned piglets were collected, and several experiments were conducted. In the small intestine, AQP4 protein expression was higher in weaned piglets fed the higher-CP diets (22% and 24% CP) than in those fed the 20% CP diet except at 72 h (p < 0.01). At 72 h, the AQP4 protein expression in the small intestine was lower in the 18% group than in the other three groups (p < 0.01). Under 20% CP feeding, AQP2, AQP4 and AQP9 protein expression in the colons of piglets peaked at certain time points. The AQP2 and AQP4 mRNA levels in the colon and the AQP4 and AQP4 mRNA levels in the distal colon were approximately consistent with the protein expression levels. However, the AQP9 mRNA content in the colon was highest in the 18% group, and the AQP2 mRNA content in the distal colon was significantly higher in the 24% group than in the 20% group. AQP2 and AQP4 were expressed mainly around columnar cells in the upper part of the smooth colonic intestinal villi, and AQP9 was expressed mainly on columnar cells and goblet cells in the colonic mucosa. In conclusion, 20% CP
Porcine Deltacoronavirus (PDCoV), an enveloped positive-strand RNA virus that causes respiratory and gastrointestinal diseases, is widely spread worldwide, but there is no effective drug or vaccine against it. This study investigated the optimal Selenium Nano-Particles (SeNPs) addition concentration (2 - 10 μg/mL) and the mechanism of PDCoV effect on ST (Swine Testis) cell apoptosis, the antagonistic effect of SeNPs on PDCoV. The results indicated that 4 μg/mL SeNPs significantly decreased PDCoV replication on ST cells. SeNPs relieved PDCoV-induced mitochondrial division and antagonized PDCoV-induced apoptosis via decreasing Cyt C release and Caspase 9 and Caspase 3 activation. The above results provided an idea and experimental basis associated with anti-PDCoV drug development and clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.