N-methyladenosine (mA) is the most common internal modification in eukaryotic mRNA. It is dynamically installed and removed, and acts as a new layer of mRNA metabolism, regulating biological processes including stem cell pluripotency, cell differentiation, and energy homeostasis. mA is recognized by selective binding proteins; YTHDF1 and YTHDF3 work in concert to affect the translation of mA-containing mRNAs, YTHDF2 expedites mRNA decay, and YTHDC1 affects the nuclear processing of its targets. The biological function of YTHDC2, the final member of the YTH protein family, remains unknown. We report that YTHDC2 selectively binds mA at its consensus motif. YTHDC2 enhances the translation efficiency of its targets and also decreases their mRNA abundance. Ythdc2 knockout mice are infertile; males have significantly smaller testes and females have significantly smaller ovaries compared to those of littermates. The germ cells of Ythdc2 knockout mice do not develop past the zygotene stage and accordingly, Ythdc2 is upregulated in the testes as meiosis begins. Thus, YTHDC2 is an mA-binding protein that plays critical roles during spermatogenesis.
SUN (Sad1 and UNC84 domain containing)-domain proteins are reported to reside on the nuclear membrane playing distinct roles in nuclear dynamics. SUN5 is a new member of the SUN family, with little knowledge regarding its function. Here, we generated Sun5−/− mice and found that male mice were infertile. Most Sun5-null spermatozoa displayed a globozoospermia-like phenotype but they were actually acephalic spermatozoa. Additional studies revealed that SUN5 was located in the neck of the spermatozoa, anchoring sperm head to the tail, and without functional SUN5 the sperm head to tail coupling apparatus was detached from nucleus during spermatid elongation. Finally, we found that healthy heterozygous offspring could be obtained via intracytoplasmic injection of Sun5-mutated sperm heads for both male mice and patients. Our studies reveal the essential role of SUN5 in anchoring sperm head to the tail and provide a promising way to treat this kind of acephalic spermatozoa-associated male infertility.
SignificanceMTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development.
Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility. male infertility | asthenozoospermia | glycolysis | mutant mouse | testis-specific gene F lagella are ancient, analogous cellular structures used for locomotion and as sensory organelles present in all three domains of life (bacteria, archaea, and eukaryotes). The advantages conferred by this organelle are highlighted by the flagella's apparent independent evolution in all three domains (1-3). Of all of the different flagella present among eukaryotes, flagella attached to gametes play a critical function in uniting gametes for fertilization and the perpetuation of a species. Mammalian spermatozoa have a specialized flagellum that contains a midpiece, principal piece, and end piece with the axoneme running along the entire length (4). The flagellum equips sperm with the capability to deliver half of the male's genetic material to the female gamete, the oocyte. In addition to flagella, eukaryotes contain another related structure called cilia. The defining feature of flagella and cilia is the axoneme, the "9+2" microtubule arraignment of two central pairs of microtubules surrounded by nine pairs of microtubule doublets (5). The microtubule motor dynein is anchored to the outer microtubules and responsible for generating the force required to produce the beating pattern of flagella and cilia (6). The force generated by dynein causes sliding of the microtubules among each other; however, the nexin complex anchors the microtubules in place. The nexin complex [or nexin-dynei...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.