Synthetic motors that consume chemical energy to produce mechanical work offer potential applications in many fields that span from computing to drug delivery and diagnostics. Among the various synthetic motors studied thus far, DNA-based machines offer the greatest programmability and have shown the ability to translocate micrometer-distances in an autonomous manner. DNA motors move by employing a burnt-bridge Brownian ratchet mechanism, where the DNA "legs" hybridize and then destroy complementary nucleic acids immobilized on a surface. We have previously shown that highly multivalent DNA motors that roll offer improved performance compared to bipedal walkers. Here, we use DNAgold nanoparticle conjugates to investigate and enhance DNA nanomotor performance. Specifically, we tune structural parameters such as DNA leg density, leg span, and nanoparticle anisotropy as well as buffer conditions to enhance motor performance. Both modeling and experiments demonstrate that increasing DNA leg density boosts the speed and processivity of motors, whereas DNA leg span increases processivity and directionality. By taking advantage of label-free imaging of nanomotors, we also uncover Levy-type motion where motors exhibit bursts of translocation that are punctuated with transient stalling. Dimerized particles also demonstrate more ballistic trajectories confirming a rolling mechanism. Our work shows the fundamental properties that control DNA motor performance and demonstrates optimized motors that can travel multiple micrometers within minutes with speeds of up to 50 nm/s. The performance of these nanoscale motors approaches that of motor proteins that travel at speeds of 100−1000 nm/s, and hence this work can be important in developing protocellular systems as well next generation sensors and diagnostics.
T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule–1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F >12 pN potentiates antigen-dependent T cell activation by enhancing T cell–substrate engagement. LFA-1/ICAM-1 mechanical events with F >12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.
A general strategy for designing probes of methionine sulfoxide reductases was reported and a first turn on probe was disclosed.
Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLβ2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.
Cells transmit piconewton forces to receptors to mediate processes such as migration and immune recognition. Amajor challenge in quantifying such forces is the sparsity of cell mechanical events.A ccordingly,m olecular tension is typically quantified with high resolution fluorescence microscopy, which hinders widespread adoption and application. Here,w er eport am echanically triggered hybridization chain reaction (mechano-HCR) that allows chemicala mplification of mechanical events.The amplification is triggered when acell receptor mechanically denatures ad uplex revealing ac ryptic initiator to activate the HCR reaction in situ. Importantly, mechano-HCR enables direct readout of pN forces using ap late reader.W el everage this capability and measured mechano-IC 50 for aspirin, Y-27632, and eptifibatide.Given that cell mechanical phenotypes are of clinical importance,mechano-HCR may offer ac onvenient route for drug discovery, personalized medicine,and disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.