Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators. The intrinsic problem complexity poses the challenge to enhance the performance of generative networks. In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs. To this end, we propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN. The searching process is formalized as solving a bi-level minimax optimization problem, in which the outer-level objective aims for seeking a suitable network architecture towards pure Nash Equilibrium conditioned on the generator and the discriminator network parameters optimized with a traditional GAN loss in the inner level. The entire optimization performs a first-order method by alternately minimizing the two-level objective in a fully differentiable manner, enabling architecture search to be completed in an enormous search space. Extensive experiments on CIFAR-10 and STL-10 datasets show that our algorithm can obtain high-performing architectures only with 3-GPU hours on a single GPU in the search space comprised of approximate 2 × 10 11 possible configurations. We also provide a comprehensive analysis on the behavior of the searching process and the properties of searched architectures, which would benefit further research on architectures for generative models. Pretrained models and codes are available at https://github.com/yuesongtian/AlphaGAN.
Generative Adversarial Networks (GANs) with high computation costs, e.g., BigGAN and StyleGAN2, have achieved remarkable results in synthesizing high resolution and diverse images with high fidelity from random noises. Reducing the computation cost of GANs while keeping generating photo-realistic images is an urgent and challenging field for their broad applications on computational resource-limited devices. In this work, we propose a novel yet simple Discriminator Guided Learning approach for compressing vanilla GAN, dubbed DGL-GAN. Motivated by the phenomenon that the teacher discriminator may contain some meaningful information, we transfer the knowledge merely from the teacher discriminator via the adversarial function. We show DGL-GAN is valid since empirically, learning from the teacher discriminator could facilitate the performance of student GANs, verified by extensive experimental findings. Furthermore, we propose a two-stage training strategy for training DGL-GAN, which can largely stabilize its training process and achieve superior performance when we apply DGL-GAN to compress the two most representative large-scale vanilla GANs, i.e., StyleGAN2 and BigGAN. Experiments show that DGL-GAN achieves state-of-the-art (SOTA) results on both StyleGAN2 (FID 2.92 on FFHQ with nearly 1/3 parameters of StyleGAN2) and BigGAN (IS 93.29 and FID 9.92 on ImageNet with nearly 1/4 parameters of BigGAN) and also outperforms several existing vanilla GAN compression techniques. Moreover, DGL-GAN is also effective in boosting the performance of original uncompressed GANs, original uncompressed StyleGAN2 boosted with DGL-GAN achieves FID 2.65 on FFHQ, which achieves a new state-of-the-art performance. Code and models are available at https://github.com/yuesongtian/DGL-GAN.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Generative adversarial networks (GANs) have received an upsurging interest since being proposed due to the high quality of the generated data. While achieving increasingly impressive results, the resource demands associated with the large model size hinders the usage of GANs in resource-limited scenarios. For inference, the existing model compression techniques can reduce the model complexity with comparable performance. However, the training efficiency of GANs has less been explored due to the fragile training process of GANs. In this paper, we, for the first time, explore the possibility of directly training sparse GAN from scratch without involving any dense or pre-training steps. Even more unconventionally, our proposed method enables directly training sparse unbalanced GANs with an extremely sparse generator from scratch. Instead of training full GANs, we start with sparse GANs and dynamically explore the parameter space spanned over the generator throughout training. Such a sparse-to-sparse training procedure enhances the capacity of the highly sparse generator progressively while sticking to a fixed small parameter budget with appealing training and inference efficiency gains. Extensive experiments with modern GAN architectures validate the effectiveness of our method. Our sparsified GANs, trained from scratch in one single run, are able to outperform the ones learned by expensive iterative pruning and re-training. Perhaps most importantly, we find instead of inheriting parameters from expensive pre-trained GANs, directly training sparse GANs from scratch can be a much more efficient solution. For example, only training with a 80% sparse generator and a 70% sparse discriminator, our method can achieve even better performance than the dense BigGAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.