Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature sensitive) were chosen as the test materials, setting the normal temperature for germination (22 °C/10 °C, 9d), low-temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with proline (15 mmol·L−1) soaking treatment, to study its effects on the osmotic regulation system and antioxidant protection system of maize embryos. Metabolomics analysis was carried out to initially reveal the basis of the metabolic regulation mechanism. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX) and glutathione reductase (GR) were induced to some extent under low-temperature stress. The activities of SOD, POD, APX and GR were further enhanced in the soaking seeds with proline. Proline treatment improved the activities of catalase (CAT), monodehydrated ascorbic acid reductase (MDHAR) and dehydroascorbic acid (DHAR), increased the contents of ascorbic acid (AsA) and glutathione (GSH) and decreased the contents of oxidized ascorbic acid (DHA) and reduced glutathione (GSSG) under low-temperature stress. The ratio of AsA/DHA and GSH/GSSG increased. The increase in antioxidant enzyme activity and the content of antioxidants can help to maintain the stability of the AsA-GSH cycle, and effectively reduce the production rate of superoxide anion (O2•−), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Based on the UPLC-MS/MS detection platform and self-built database, 589 metabolites were detected in each treated maize embryo; 262 differential metabolites were obtained, including 32 organic acids, 28 amino acids, 20 nucleotides and their derivatives, 26 sugars and alcohols, 46 lipids, 51 alkaloids, 44 phenols and 15 other metabolites. Sixty-eight metabolic pathways involving different metabolites were obtained by KEGG enrichment analysis. The results showed that proline increased the accumulation of sorbitol, planteose, erythritose 4-phosphate, arabinose and other saccharides and alcohols in response to low-temperature stress, increased the content of osmoregulation substances under low-temperature stress. Proline also restored the TCA cycle by increasing the content of α-ketoglutarate and fumaric acid. Proline increased the contents of some amino acids (ornithine, proline, glycine, etc.), alkaloids (cocamidopropyl betaine, vanillylamine, 6-hydroxynicotinic acid, etc.), phenols (phenolic ayapin, chlorogenic acid, etc.) and vitamins (ascorbic acid, etc.) in the embryo under low-temperature stress. Combined with pathway enrichment analysis, proline could enhance the low-temperature stress resistance of germinated maize embryos by enhancing starch and sucrose metabolism, arginine and proline metabolism, biosynthesis of secondary metabolites, flavonoid biosynthesis and pentose phosphate pathway.
In response to the production crisis caused by a winter feed shortage due to the rapid development of the animal husbandry industry, winter rye 001 was selected to study differences in stalk and senescence characteristics in yield formation in cold regions. Five density treatments were established in a randomized design as 225 × 104 plant·hm−2 (D1), 275 × 104 plant·hm−2 (D2), 325 × 104 plant·hm−2 (D3), 375 × 104 plant·hm−2 (D4), and 425 × 104 plant·hm−2 (D5). Stem characteristics, SOD activity, POD activity, MDA content, and differences in yield and feeding quality under different population densities were analyzed. The plant height, center of gravity, and stem basal internode length showed an increasing trend with an increase in planting density. The stem wall thickness, diameter, strength, and lodging resistance indices decreased. At 275 × 104 plants·hm−2, the rye crude protein content was the highest while neutral washing fiber and acid washing fiber were the lowest, and feed quality was the best. With an increase in density, spike number, grain number per spike, and thousand-grain weight first increased and then decreased. We concluded that the yield and feeding quality were best when the basic seedling was at 275 × 104 plants hm−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.