Objective: We propose a deep-learning-based underwater target detection system that can effectively solve the problem of underwater optical image target detection and recognition. Methods: In this paper, based on the depth of the underwater optical image target detection and recognition and using a learning model, we put forward corresponding solutions using the concept of style migration solutions, such as training samples. A lack of variability and poor generalization of practical applications presents a challenge for underwater object identification. The UW_YOLOv3 lightweight model was proposed to solve the problems of calculating energy consumption and storage resource limitations in underwater application scenarios. The detection and recognition module, based on deep learning, can deal with the degradation process of underwater imaging by embedding an image enhancement module into the detection and recognition module for the joint tuning and transferring of knowledge. Results: The detection accuracy of the UW_YOLOv3 model designed in this paper outperformed the lightweight algorithm YOLOV3-TINY by 7.9% at the same image scale input. Compared with other large algorithms, the detection accuracy was lower, but the detection speed was much higher. Compared with the SSD algorithm, the detection accuracy was only 4.7 lower; the speed was 40.9 FPS higher; and the rate was nearly 16 times higher than Faster R-CNN. When the input scale was 224, although part of the accuracy was lost, the detection speed doubled, reaching 156.9 FPS. Conclusion: Based on our framework, the problem of underwater optical image target detection and recognition can be effectively solved. Relevant studies have not only enriched the theory of target detection and glory, but have also provided optical glasses with a clear vision for appropriate underwater application systems.
Objective: The shallow underwater environment is complex, with problems of color shift, uneven illumination, blurring, and distortion in the imaging process. These scenes are very unfavorable for the reasoning of the detection network. Additionally, typical object identification algorithms struggle to maintain high resilience in underwater environments due to picture domain offset, making underwater object detection problematic. Methods: This paper proposes a single-stage detection method with the double enhancement of anchor boxes and features. The feature context relevance is improved by proposing a composite-connected backbone network. The receptive field enhancement module is introduced to enhance the multi-scale detection capability. Finally, a prediction refinement strategy is proposed, which refines the anchor frame and features through two regressions, solves the problem of feature anchor frame misalignment, and improves the detection performance of the single-stage underwater algorithm. Results: We achieved an effect of 80.2 mAP on the Labeled Fish in the Wild dataset, which saves some computational resources and time while still improving accuracy. On the original basis, UWNet can achieve 2.1 AP accuracy improvement due to the powerful feature extraction function and the critical role of multi-scale functional modules. At an input resolution of 300 × 300, UWNet can provide an accuracy of 32.4 AP. When choosing the number of prediction layers, the accuracy of the four and six prediction layer structures is compared. The experiments show that on the Labeled Fish in the Wild dataset, the six prediction layers are better than the four. Conclusion: The single-stage underwater detection model UWNet proposed in this research has a double anchor frame and feature optimization. By adding three functional modules, the underwater detection of the single-stage detector is enhanced to address the issue that it is simple to miss detection while detecting small underwater targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.