packaging, account for a large fraction of the total weight of the device, the use of thin electrodes results in a signifi cantly lower energy density than what could be attained using thicker electrodes. [ 3 ] Therefore, the development of thick electrodes for supercapacitors represents an important direction for making high-energy supercapacitors for practical applications.We recently developed a class of pseudocapacitive anode materials for asymmetric supercapacitors composed of interpenetrating networks of carbon nanotubes (CNTs) and V 2 O 5 nanowires. [ 16 ] The CNTs and nanowires were intimately intertwined into a hierarchically porous structure, enabling effective electrolyte access to the electrochemically active materials without limiting charge transport. Such composites exhibited high specifi c capacitance ( > 300 F g − 1 ) at high current density (1 A g − 1 ) in aqueous electrolyte. In this paper we report the fabrication of high energy density asymmetric supercapacitors containing thick-fi lm electrodes (over 100 μ m thick) of the CNT/V 2 O 5 nanowire composite in combination with an organic electrolyte, which allows for a higher initial cell potential. The excellent conductivity, high specifi c capacitance, and large voltage window of the CNT/V 2 O 5 nanocomposite enable the fabrication of devices with an energy density as high as 40 Wh kg − 1 at a power density of 210 W kg − 1 . Even at a high power density of 6 300 W kg − 1 , the device possesses an energy density of nearly 7.0 Wh kg − 1 . Moreover, the resulting devices exhibit excellent cycling stability. This work demonstrates that the nanowire composite approach is an effective strategy towards high-energy and high power density supercapacitors. Figure 1 A shows a representative scanning electron microscopy (SEM) image of a nanocomposite with 18 wt% of CNTs, demonstrating a continuous fi brous structure (Figure 1 A). The intertwined networks of the CNTs and nanowires exhibit an electrical conductivity of ≈ 3.0 S cm − 1 , which is 80 times higher than that of V 2 O 5 nanowires (0.037 S cm − 1 ). Figure 1 B is a transmission electron microscopy (TEM) image of a V 2 O 5 nanowire with a diameter of around 50 nm. The high-resolution TEM (HRTEM) image (inset) suggests the nanowire contains a layered crystalline structure; the small nanowire dimension allows effective Li + diffusion. Moreover, nitrogen sorption isotherms ( Figure S1, Supporting Information) and higher resolution SEM images of the etched composite fi lm (Figure 1 A, inset) show that the composite possesses a hierarchically porous structure; the presence of large pores enables rapid electrolyte transport while the small pores effectively increase the surface area available for electrochemical reactions. These small pores are responsible for the surface area of 125 m 2 g − 1 determined for the composite.An ideal electrical energy storage device provides both high energy and power density. [ 1 , 2 ] Supercapacitors exhibit signifi cantly higher power densities compared to batteries and ...
Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C₃N₄). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C₃N₄. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.
High-color-purity emissions with small af ull-width at half-maximum (FWHM) are an ongoing pursuit for highresolution displays.T hough the flourishment of narrow-band emissive materials with multi-resonance induced thermally activated delayed fluorescence (MR-TADF) in the blue region, such materials have not validated their potential in other color regions.Byamplifying the influence of skeleton and peripheral units,as eries of highly efficient green-emitting MR-TADF materials are firstly reported. Peripheral units with electrondeficit properties can significantly narrowt he energy gap for bathochromic emission without compromising the color fidelity.MR-TADF emitters with photo-luminance quantum yields of above9 0% with FWHMs of 25 nm are developed. The corresponding organic light-emitting diodes showm aximum external quantum efficiency/ power efficiency of 22.02 %/ 69.82 lm W À1 with excellent long-term stability.Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.