Rauvolfia vomitoria is widely distributed in the tropical regions of Africa and Asia, and has been used in traditional folk medicine in China. Indole alkaloids were found to be major bioactive components, while the effects of diabetes mellitus on the pharmacokinetic parameters of the components have not been reflected in vivo. In this study, an efficient and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of five ingredients of R. vomitoria in rats. Detection was implemented in multiple‐reaction‐monitoring mode with an electrospray positive‐ionization source. Validation parameters were all in accordance with the current criterion. The established method was effectively employed to compare the pharmacokinetic behaviors of five alkaloids (reserpine, yohimbine, ajmaline, ajmalicine, and serpentine) between normal and type 2 diabetic rats. The single‐dose pharmacokinetic parameters of the five alkaloids were determined in normal and diabetic rats after oral administration of 100 and 200 mg/kg body weight. The results indicated that diabetes mellitus significantly altered the pharmacokinetic characteristics of yohimbine, ajmaline, and ajmalicine after oral administration in rats. This is an attempt to provide some evidence for clinicians that may serve as a guide for the use of antidiabetic medicine in clinical practice.
BackgroundThere is no standard treatment for stage III lung cancer due to its low surgical resection rate, and improving PFS and survival of patients with III NSCLC has become an urgent challenge in clinical treatment. For EGFR mutation-positive patients, targeted therapy has the remarkable feature of high efficiency and low toxicity compared with first-line standard chemotherapy, and targeted neoadjuvant therapy needs to be further explored.MethodWe report 3 diagnosed cases of locally advanced unresectable NSCLC with EGFR-sensitive mutations who first received 1–2 cycles of preoperative chemotherapy neoadjuvant therapy and were treated with 110 mg daily of 3rd-generation EGFR-TKI aumolertinib instead because of poor efficacy or safety intolerance.ResultAfter 2 cycles of aumolertinib treatment, all 3 patients achieved symptomatic remission and significant tumor size reduction and achieved downstaging to allow surgical treatment. No additional operative difficulties were added during the surgery. They continued to receive adjuvant therapy with the original dose of aumolertinib after surgical treatment, and no evidence of tumor recurrence was found until the most recent imaging examination. In addition, the course of neoadjuvant and adjuvant therapy was free of serious adverse effects.ConclusionPerioperative treatment of these three cases of locally advanced unresectable NSCLC with EGFR-sensitive mutations with the third-generation EGFR-TKI aumolertinib showed significant efficacy and excellent safety and may be a new option for targeted therapy in the perioperative period.
Background: Naphthoquine (NQ) is a suitable partner anti-malarial for the artemisinin-based combination therapy (ACT), which is recommended to be taken orally as a single-dose regimen. The metabolism of NQ was mainly mediated by CYP2D6, which is well-known to show gender-specific differences in its expression. In spite of its clinical use, there is limited information on the pharmacokinetics of NQ, and no data are available for females. In this study, the effect of gender on the pharmacokinetics and antiplasmodial efficacy of NQ in rodents was evaluated. The underlying factors leading to the potential gender difference, i.e., plasma protein binding and metabolic clearance, were also evaluated. Methods: The pharmacokinetic profiles of NQ were investigated in healthy male or female rats after a single oral administration of NQ. The antiplasmodial efficacy of NQ was studied in male or female mice infected with Plasmodium yoelii. The recrudescence and survival time of infected mice were also recorded after drug treatment. Plasma protein binding of NQ was determined in pooled plasma collected from male or female mice, rat or human. In vitro metabolism experiments were performed in the liver microsomes of male or female mice, rat or human. Results: The results showed that the gender of rats did not affect NQ exposure (AUC 0-t and C max) significantly (P > 0.05). However, a significant (P < 0.05) longer t 1/2 was found for NQ in male rats (192.1 ± 47.7), compared with female rats (143.9 ± 27.1). Slightly higher but not significant (P > 0.05) antiplasmodial activity was found for NQ in male mice (ED 90 , 1.10 mg/kg) infected with P. yoelii, compared with female mice (ED 90 , 1.67 mg/kg). The binding rates of NQ to plasma protein were similar in males and females. There was no metabolic difference for NQ in male and female mice, rat or human liver microsomes. Conclusions: These results indicated that the pharmacokinetic profiles of NQ were similar between male and female rats, except for a longer t 1/2 in male rats. The difference was not associated with plasma protein binding or hepatic metabolic clearance. Equivalent antiplasmodial activity was found for NQ in male and female mice infected with P. yoelii. This study will be helpful for the rational design of clinical trials for NQ.
Background: Hepatocellular damage has been reported for the antimalarial piperaquine (PQ) in the clinic after cumulative doses. Objectives: The role of metabolism in PQ toxicity was evaluated, and the mechanism mediating PQ hepatotoxicity was investigated. Method: The toxicity of PQ and its major metabolite (PQ N-oxide; M1) in mice was evaluated in terms of serum biochemical parameters. The role of metabolism in PQ toxicity was investigated in mice pretreated with an inhibitor of CYP450 (ABT) and/or FMO enzyme (MMI). The dose-dependent pharmacokinetics of PQ and M1 were studied in mice. Histopathological examination was performed to reveal the mechanism mediating PQ hepatotoxicity. Results: Serum biochemical levels (ALT and BUN) increased significantly (P < 0.05) in mice after three-day oral doses of PQ (> 200 mg/kg/day), indicating hepatotoxicity and nephrotoxicity of PQ at a high dose. Weaker toxicity was observed for M1. Pretreatment with ABT and/or MMI did not increase PQ toxicity. PQ and M1 showed linear pharmacokinetics in mice after a single oral dose, and multiple oral doses led to their cumulative exposures. Histopathological examination showed that a high dose of PQ (> 200 mg/kg/day for three days) could induce hepatocyte apoptosis. The mRNA levels of targets in NF-κB and p53 pathways could be up-regulated by 2-30-fold in mice by PQ or M1. Conclusions: PQ metabolism led to detoxification of PQ, but there was a low possibility of altered toxicity induced by metabolism inhibition. The hepatotoxicity of PQ and its N-oxidation metabolite was partly mediated by NF-κB inflammatory pathway and p53 apoptosis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.