Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV‐ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno‐associated virus (AAV) was injected into monocrotaline (MCT)‐induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N‐terminal pro‐brain natriuretic peptide (NT‐proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial‐to‐mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up‐regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.
Background As it is unclear whether there is genetic susceptibility to cardiorenal syndrome (CRS), we conducted a genome-wide association study of dilated cardiomyopathy (DCM)-induced heart failure (HF) associated with renal insufficiency (RI) in a Chinese population to identify putative susceptibility variants and culprit genes. Methods A total of 99 Han Chinese patients with DCM-induced chronic HF were selected and divided into one of three groups, namely, HF with normal renal function (Group 1), HF with mild RI (Group 2) and HF with moderate to severe RI (Group 3). Genomic DNA was extracted from each subject for genotyping. Results According to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, top 10 lists of molecular function, cell composition and biological process of differential target genes and 15 signalling pathways were discriminated among the three groups. Additionally, sequencing results identified 26 significantly different single-nucleotide polymorphisms (SNPs) in the 15 signalling pathways, including three SNPs (rs57938337, rs6683225 and rs6692782) in ryanodine receptor 2 (RYR2) and two SNPs (rs12439006 and rs16958069) in RYR3. The genotype and allele frequencies of the five SNPs in RYR2 and RYR3 were significantly differential between HF (Group 1) and CRS (Group 2 + 3) patients. Conclusion Twenty-six significantly different SNP loci in 17 genes of the 15 KEGG pathways were found in the three patient groups. Among these variants, rs57938337, rs6683225 and rs6692782 in RYR2 and rs12439006 and rs16958069 in RYR3 are associated with RI in Han Chinese patients with heart failure, suggesting that these variants may be used to identify patients susceptible to CRS in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.