In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are sequentially made to show that the corresponding lump solutions tend to zero when 2 2 x y + → ∞. Particularly, lump solutions with specific values of the include parameters are plotted, as illustrative examples. Finally, a combination of stripe soliton and lump soliton is discussed to the KP-BBM equation, in which such a solution presents two different interesting phenomena: lump-kink and lump-soliton. Simultaneously, breather rational soliton solutions are displayed.
Based on searching the combining of quadratic function and exponential (or hyperbolic cosine) function from the Hirota bilinear form of the dimensionally reduced p-gBKP equation, eight class of interaction solutions are derived via symbolic computation with Mathematica. The submergence phenomenon, presented to illustrate the dynamical features concerning these obtained solutions, is observed by three-dimensional plots and density plots with particular choices of the involved parameters between the exponential (or hyperbolic cosine) function and the quadratic function. It is proved that the interference between the two solitary waves is inelastic.
In this paper, abundant lump solutions and two types of interaction solutions of the (3+1)-D Kadomtsev-Petviashvili equation are obtained by the Hirota bilinear method. Some contour plots with different determinant values are sequentially given to show that the corresponding lump solution tends to zero when the determinant approaches to zero. The interaction solutions with special parameters are plotted to elucidate the solution properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.