CFEM domain commonly occurs in fungal extracellular membrane proteins. To provide insights for understanding putative functions of CFEM, we investigate the evolutionary dynamics of CFEM domains by systematic comparative genomic analyses among diverse animals, plants, and more than 100 fungal species, which are representative across the entire group of fungi. We here show that CFEM domain is unique to fungi. Experiments using tissue culture demonstrate that the CFEM-containing ESTs in some plants originate from endophytic fungi. We also find that CFEM domain does not occur in all fungi. Its single origin dates to the most recent common ancestors of Ascomycota and Basidiomycota, instead of multiple origins. Although the length and architecture of CFEM domains are relatively conserved, the domain-number varies significantly among different fungal species. In general, pathogenic fungi have a larger number of domains compared to other species. Domain-expansion across fungal genomes appears to be driven by domain duplication and gene duplication via recombination. These findings generate a clear evolutionary trajectory of CFEM domains and provide novel insights into the functional exchange of CFEM-containing proteins from cell-surface components to mediators in host-pathogen interactions.
Neuropsychiatric disorders are a collective of cerebral conditions with a multifactorial and polygenetic etiology. Dysregulation of epigenetic profiles in the brain is considered to play a critical role in the development of neuropsychiatric disorders. SET domain, bifurcate 1 (SETDB1), functioning as a histone H3K9 specific methyltransferase, is not only critically involved in transcriptional silencing and local heterochromatin formation, but also affects genome-wide neuronal epigenetic profiles and is essential for 3D genome integrity. Here, we provide a review of recent advances towards understanding the role of SETDB1 in the central nervous system during early neurodevelopment as well as in the adult brain, with a particular focus on studies that link its functions to neuropsychiatric disorders and related behavioral changes, and the exploration of novel therapeutic strategies targeting SETDB1.
Genetically distinct GABAergic interneuron subtypes play diverse roles in cortical circuits. Previous studies revealed that microRNAs (miRNAs) are differentially expressed in cortical interneuron subtypes, and are essential for the normal migration, maturation, and survival of medial ganglionic eminence-derived interneuron subtypes. How miRNAs function in vasoactive intestinal peptide expressing (VIP+) interneurons derived from the caudal ganglionic eminence remains elusive. Here, we conditionally removed Dicer in postmitotic VIP+ interneurons to block miRNA biogenesis. We found that the intrinsic and synaptic properties of VIP+ interneurons and pyramidal neurons were concordantly affected prior to a progressive loss of VIP+ interneurons. In vivo recording further revealed elevated cortical local field potential power. Mutant mice had a shorter life span but exhibited better spatial working memory and motor coordination. Our results demonstrate that miRNAs are indispensable for the function and survival of VIP+ interneurons, and highlight a key role of VIP+ interneurons in cortical circuits.
Regulatory mechanisms associated with repeat-rich sequences and chromosomal conformations in mature neurons remain unexplored. Here, we map cell-type specific chromatin domain organization in adult mouse cerebral cortex and report strong enrichment of Endogenous Retrovirus 2 (ERV2) repeat sequences in the neuron-specific heterochromatic B2NeuN+ megabase-scaling subcompartment. Single molecule long-read sequencing and comparative Hi-C chromosomal contact mapping in wild-derived SPRET/EiJ (Mus spretus) and laboratory inbred C57BL/6J (Mus musculus) reveal neuronal reconfigurations tracking recent ERV2 expansions in the murine germline, with significantly higher B2NeuN+ contact frequencies at sites with ongoing insertions in Mus musculus. Neuronal ablation of the retrotransposon silencer Kmt1e/Setdb1 triggers B2NeuN+ disintegration and rewiring with open chromatin domains enriched for cellular stress response genes, along with severe neuroinflammation and proviral assembly with infiltration of dendrites . We conclude that neuronal megabase-scale chromosomal architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, results in transcriptional dysregulation and unleashes ERV2 proviruses with strong neuronal tropism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.