Objective: Tinnitus is a prevalent hearing disorder, which could have a devastating impact on a patient's life. Functional studies have revealed connectivity pattern changes in the tinnitus brains that suggested a change of network dynamics as well as topological organization. However, no studies have yet provided evidence for the topological network changes in the gray matter. In this research, we aim to use the graph-theoretical approach to investigate the changes of topology in the tinnitus brain using structural MRI data, which could provide insights into the underlying anatomical basis for the neural mechanism in generating phantom sounds.
Methods:We collected 3D MRI images on 46 bilateral tinnitus patients and 46 age and gender-matched healthy controls. Brain networks were constructed with correlation matrices of the cortical thickness and subcortical volumes of 80 cortical/subcortical regions of interests. Global network properties were analyzed using local and global efficiency, clustering coefficient, and small-world coefficient, and regional network properties were evaluated using the betweenness coefficient for hub connectivity, and interregional correlations for edge properties. Between-group differences in cortical thickness and subcortical volumes were assessed using independent sample t-tests, and local efficiency, global efficiency, clustering coefficient, sigma, and interregional correlation were compared using non-parametric permutation tests.Results: Tinnitus was found to have increased global efficiency, local efficiency, and cluster coefficient, indicating generally heightened connectivity of the network. The small-world coefficient remained normal for tinnitus, indicating intact smallworldness. Betweenness centrality analysis showed that hubs in the amygdala and parahippocampus were only found for tinnitus but not controls. In contrast, hubs in the auditory cortex, insula, and thalamus were only found for controls but not tinnitus. Interregional correlation analysis further found in tinnitus enhanced connectivity between the auditory cortex and prefrontal lobe, and decreased connectivity of the insula with anterior cingulate gyrus and parahippocampus.
Introduction: The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. Methods: Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. Results: Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. Discussion: Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values.
• Sciatic nerves in diabetic rats showed a gradual increase in T2 values • Nerve T2 values were negatively correlated with sensory function impairment • Longitudinal T2 values can be used to monitor the disease progress • Nerve degeneration contributed mainly to progressive prolongation of nerve T2 values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.