Asiaticoside (ATS) isolated from the leaves of Centella asiatica possesses strong wound-healing properties and reduces scar formation. However, the specific effects of asiaticoside on the formation of keloidal scars remain unknown. In the present study, we evaluated the in vitro effects of asiaticoside on the proliferation, collagen expression, and transforming growth factor (TGF)-β/Smad signaling of keloid-derived fibroblasts. Fibroblasts isolated from keloid tissue and normal skin tissues were treated with asiaticoside at different concentrations. Afterwards, they were subjected to RT-PCR and Western blot analyses. The inhibitory effects of asiaticoside on fibroblast viability were assayed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Asiaticoside decreased fibroblast proliferation in a time- and dose-dependent manner. It also inhibited type I and type III collagen protein and mRNA expressions. In addition, asiaticoside reduced the expression of both TGF-βRI and TGF-βRII at the transcriptional and translational level. Moreover, it increased the expression of Smad7 protein and mRNA. However, asiaticoside did not influence the expression of Smad2, Smad3, Smad4, phosphorylated Smad2, and phosphorylated Smad3. Taken together, these results suggest that asiaticoside could be of potential use in the treatment and/or prevention of hypertrophic scars and keloids.
Background: Treatment of chronic wounds using traditional surgical procedures is challenging because of the low graft take rates. This study investigated the combination approach of split-thickness autografts with harvested skin cell suspension for chronic wound treatment. Click here to watch video footage recorded by the author about the contents of this paper.
Early escharectomy and concurrent composite razor-thin skin autografting on top of acellular dermal matrix scaffold constitute an effective and favorable option for covering deep facial burns, especially for patients with limited donor sites.
Theoretical investigations on the kinetics of decomposition and isomerization reactions for five types of branched pentanol radicals were carried out in this work. The M06-2X/6-311++G(d,p) level of theory was used...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.