Lane detection plays an essential part in advanced driver-assistance systems and autonomous driving systems. However, lane detection is affected by many factors such as some challenging traffic situations. Multilane detection is also very important. To solve these problems, we proposed a lane detection method based on instance segmentation, named RS-Lane. This method is based on LaneNet and uses Split Attention proposed by ResNeSt to improve the feature representation on slender and sparse annotations like lane markings. We also use Self-Attention Distillation to enhance the feature representation capabilities of the network without adding inference time. RS-Lane can detect lanes without number limits. The tests on TuSimple and CULane datasets show that RS-Lane has achieved comparable results with SOTA and has improved in challenging traffic situations such as no line, dazzle light, and shadow. This research provides a reference for the application of lane detection in autonomous driving and advanced driver-assistance systems.
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
Shortening inter-vehicle distance can increase traffic throughput on roads for increasing volume of vehicles. In the process, traffic accidents occur more frequently, especially for multi-car accidents. Furthermore, it is difficult for drivers to drive safely under such complex driving conditions. This paper investigates multi-vehicle longitudinal collision avoidance issue under such traffic conditions based on the Advanced Emergency Braking System (AEBS). AEBS is used to avoid collisions or mitigate the impact during critical situations by applying brake automatically. Hierarchical multi-vehicle longitudinal collision avoidance controller is proposed to guarantee safety of multi-cars using Vehicle-to-Infrastructure (V2I) communication capability in addition to radar for longitudinal vehicle control. High-level controller is designed to ensure safety of multi-cars and optimize Manuscript
In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.