Abstract. We perform numerical simulations in the one-dimensional torus for the first order Burgers equation forced by a stochastic source term with zero spatial integral. We suppose that this source term is a white noise in time, and consider various regularities in space. For the numerical tests, we apply a finite volume scheme combining the Godunov numerical flux with the Euler-Maruyama integrator in time. Our Monte-Carlo simulations are analyzed in bounded time intervals as well as in the large time limit, for various regularities in space. The empirical mean always converges to the space-average of the (deterministic) initial condition as t → ∞, just as the solution of the deterministic problem without source term, even if the stochastic source term is very rough. The empirical variance also stablizes for large time, towards a limit which depends on the space regularity and on the intensity of the noise.Résumé. Nous effectuons uneétude numérique de l'équation de Burgers non visqueuse en dimension un d'espace, avec des conditions aux limites périodiques et un terme source stochastique de moyenne spatiale nulle. Ce terme source possède la régularité d'un bruit blanc en temps, tandis que nous considérons différentes régularités en espace. Pour les tests numériques, nous utilisons un schéma de volumes finis combinant une intégration en temps de type Euler-Maruyama avec le flux numérique de Godunov. Nous effectuons des simulations avec la méthode de Monte-Carlo et analysons les résultats pour différentes régularités en accordant une attention particulière au comportement en temps long. Il apparaît que la moyenne empirique des réalisations converge toujours vers la moyenne en espace de la condition initiale (déterministe) quand t → ∞, comme c'est le cas pour la solution du problème sans terme source, même dans le cas où le terme stochastique est peu régulier en espace. Par ailleurs, la variance empirique converge elle aussi en temps long, vers une valeur qui dépend de la régularité et de l'amplitude du terme stochastique.
In this paper, we prove the existence and uniqueness of the entropy solution for a first-order stochastic conservation law with a multiplicative source term involving a Q-Brownian motion. After having defined a measure-valued weak entropy solution of the stochastic conservation law, we present the Kato inequality, and as a corollary, we deduce the uniqueness of the measure-valued weak entropy solution, which coincides with the unique weak entropy solution of the problem. The Kato inequality is proved by a doubling of variables method; to that purpose, we prove the existence and the uniqueness of the strong solution of an associated stochastic nonlinear parabolic problem by means of an implicit time discretization scheme; we also prove its convergence to a measure-valued entropy solution of the stochastic conservation law, which proves the existence of the measure-valued entropy solution. KEYWORDS associated parabolic problem, existence and uniqueness of the entropy solution, Kato inequality, Q-Brownian motion, stochastic first-order conservation law MSC CLASSIFICATION 60H15; 35L60; 35A07 Several articles have been devoted to the study of stochastic perturbations of nonlinear first-order hyperbolic problems. Let us mention the article of Bauzet-Vallet-Wittbold 1 who prove the existence and uniqueness of a stochastic entropy Math Meth Appl
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.