This paper presents a real-time Acoustic Echo Cancellation (AEC) algorithm submitted to the AEC-Challenge. The algorithm consists of three modules: Generalized Cross-Correlation with PHAse Transform (GCC-PHAT) based time delay compensation, weighted Recursive Least Square (wRLS) based linear adaptive filtering and neural network based residual echo suppression. The wRLS filter is derived from a novel semi-blind source separation perspective. The neural network model predicts a Phase-Sensitive Mask (PSM) based on the aligned reference and the linear filter output. The algorithm achieved a mean subjective score of 4.00 and ranked 2nd in the AEC-Challenge.
Deep neural networks (DNNs) have shown promising results for acoustic echo cancellation (AEC). But the DNN-based AEC models let through all near-end speakers including the interfering speech. In light of recent studies on personalized speech enhancement, we investigate the feasibility of personalized acoustic echo cancellation (PAEC) in this paper for full-duplex communications, where background noise and interfering speakers may coexist with acoustic echoes. Specifically, we first propose a novel backbone neural network termed as gated temporal convolutional neural network (GTCNN) that outperforms stateof-the-art AEC models in performance. Speaker embeddings like d-vectors are further adopted as auxiliary information to guide the GTCNN to focus on the target speaker. A special case in PAEC is that speech snippets of both parties on the call are enrolled. Experimental results show that auxiliary information from either the near-end speaker or the far-end speaker can improve the DNN-based AEC performance. Nevertheless, there is still much room for improvement in the utilization of the finitedimensional speaker embeddings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.