A push-pull copolymer is presented which can be used in bulk heterojunction (BHJ) solar cells with active layers greater than 200 nm and fill factors above 60%. The efficiencies of most BHJ solar cells are limited by the fact that they have active layers which are between 60 and 110 nm. While this thickness regime enables peak quantum efficiencies (EQE) of 60%–70%, the ability to fabricate thicker devices would increase average EQE values and thus device efficiencies. Discovery of materials which can maintain high performance at large thicknesses will enable higher performance in BHJ hero cells and increase the commercial viability of this technology.
The influences triggered by the structurally diverse electron-withdrawing terminal group and fuse-ring electron-deficient core on the performance of NFAs OSCs are comprehensively investigated by using DFT, TD-DFT and Marcus charge transfer theory.
Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD) simulations were performed on six inhibitors, chrysin (M01), fisetin (M03), galangin (M04), genistein (M05), quercetin (M06) and kaempferol (M07), complexed with CDK6/cyclin D. For all six flavonoids, the 3’-OH and 4’-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3’, 4’, 7-trihydroxyflavone (M15). The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force) and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.