Circadian clocks are endogenous oscillators that control ∼24-hour physiology and behaviors in virtually all organisms. The circadian oscillator comprises interconnected transcriptional and translational feedback loops, but also requires finely coordinated protein homeostasis including protein degradation and maturation. However, the mechanisms underlying the mammalian clock protein maturation is largely unknown. In this study, we demonstrate that necdin, one of the Prader-Willi syndrome (PWS)-causative genes, is highly expressed in the suprachiasmatic nuclei (SCN), the pacemaker of circadian clocks in mammals. Mice deficient in necdin show abnormal behaviors during an 8-hour advance jet-lag paradigm and disrupted clock gene expression in the liver. By using yeast two hybrid screening, we identified BMAL1, the core component of the circadian clock, and co-chaperone SGT1 as two necdin-interactive proteins. BMAL1 and SGT1 associated with the N-terminal and C-terminal fragments of necdin, respectively. Mechanistically, necdin enables SGT1-HSP90 chaperone machinery to stabilize BMAL1. Depletion of necdin or SGT1/HSP90 leads to degradation of BMAL1 through the ubiquitin–proteasome system, resulting in alterations in both clock gene expression and circadian rhythms. Taken together, our data identify the PWS-associated protein necdin as a novel regulator of the circadian clock, and further emphasize the critical roles of chaperone machinery in circadian clock regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.