In this paper, a novel path planning algorithm with Reinforcement Learning is proposed based on the topological map. The proposed algorithm has a two-level structure. At the first level, the proposed method generates the topological area using the region dynamic growth algorithm based on the grid map. In the next level, the Multi-SARSA method divided into two layers is applied to find a near-optimal global planning path, in which the artificial potential field method, first of all, is used to initialize the first Q table for faster learning speed, and then the second Q table is initialized with the connected domain obtained by topological map, which provides the prior information. A combination of the two algorithms makes the algorithm easier to converge. Simulation experiments for path planning have been executed. The results indicate that the method proposed in this paper can find the optimal path with a shorter path length, which demonstrates the effectiveness of the presented method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.