Significance: It is a well-established scientific observation that mammalian cells contain fidelity or watchdog proteins that maintain the correct function of cellular organelles. Recent Advances: Over the past several years, the Sirtuin deacetylase family protein Sirt3 has emerged as a mitochondrial fidelity protein that directs energy generation and regulates reactive oxygen species (ROS) scavenging proteins. Loss of function or genetic mutation of these fidelity proteins has been shown to create a cellular environment that is permissive for the development of cellular damage associated with processes such as aging and carcinogenesis. Critical Issues: Mitochondria are the primary organelles that direct oxidative metabolism for the production of ATP; however, this is also a significant source of ROS. Thus, it is reasonable to propose that mitochondria should contain proteins that would signal downstream target molecules and/or ROS scavenger enzymes to maintain mitochondrial and cellular homeostatic poise. It is also reasonable to hypothesize that the mitochondria contain fidelity proteins similar to those found in the nucleus and cytoplasm. We discuss a new role of Sirt3 in the direction of the primary superoxide scavenger protein, manganese superoxide dismutase (MnSOD), and how the acetylation or deacetylation of several specific lysines appears to direct MnSOD enzymatic dismutase activity. Future Directions: Aberrant downstream regulation of MnSOD by Sirt3 may be a potential source of cellular damage that accumulates with aging to create a tumor-permissive phenotype. Future studies can explore the role of MnSOD in age-related illness using this new mechanism of enzymatic regulation.
Sirtuins participate in sensing nutrient availability and directing metabolic activity to match energy needs with energy production and consumption. However, the pivotal targets for sirtuins in cancer are mainly unknown. In this study, we identify the M2 isoform of pyruvate kinase (PKM2) as a critical target of the sirtuin SIRT2 implicated in cancer. PKM2 directs the synthesis of pyruvate and acetyl-CoA, the latter of which is transported to mitochondria for use in the Krebs cycle to generate ATP. Enabled by a shotgun mass spectrometry analysis founded on tissue culture models, we identified a candidate SIRT2 deacetylation target at PKM2 lysine 305 (K305). Biochemical experiments including site-direct mutants that mimicked constitutive acetylation suggested that acetylation reduced PKM2 activity by preventing tetramerization to the active enzymatic form. Notably, ectopic overexpression of a deacetylated PKM2 mutant in Sirt2-deficient mammary tumor cells altered glucose metabolism and inhibited malignant growth. Taken together, our results argued that loss of SIRT2 function in cancer cells reprograms their glycolytic metabolism via PKM2 regulation, partially explaining the tumor-permissive phenotype of mice lacking Sirt2.
It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these proteins also function as tumor suppressors (TSs). While the first identified TSs were confined to either the nucleus and/or the cytoplasm, it seemed logical to hypothesize that the mitochondria may also contain fidelity proteins that serve as TSs. In this regard, it now appears clear that at least two mitochondrial sirtuins function as sensing, watchdog, or TS proteins in vitro, in vivo, and in human tumor samples. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity/sensing proteins, SIRT3 and SIRT4, respond to changes in cellular nutrient status to alter the enzymatic activity of specific downstream targets to maintain energy production that matches energy availability and ATP consumption. As such, it is proposed that loss of function or genetic deletion of these mitochondrial genes results in a mismatch of mitochondrial energy metabolism, culminating in a cell phenotype permissive for transformation and tumorigenesis. In addition, these findings clearly suggest that loss of proper mitochondrial metabolism, via loss of SIRT3 and SIRT4, is sufficient to promote carcinogenesis.
The observation that cellular transformation depends on breaching a crucial KRAS activity threshold, along with the finding that only a small percentage of cellsharboring KRAS mutations are transformed, support the idea that additional, not fully uncovered, regulatory mechanisms may contribute to KRAS activation. Here we report that KrasG12D mice lacking Sirt2 show an aggressive tumorigenic phenotype as compared to KrasG12D mice. This phenotype includes increased proliferation, KRAS acetylation, and activation of RAS downstream signaling markers. Mechanistically, KRAS K147 is identified as a novel SIRT2-specific deacetylation target by mass spectrometry, whereas its acetylation status directly regulates KRAS activity, ultimately exerting an impact on cellular behavior as revealed by cell proliferation, colony formation, and tumor growth. Given the significance of KRAS activity as a driver in tumorigenesis, identification of K147 acetylation as a novel post-translational modification directed by SIRT2 in vivo may provide a better understanding of the mechanistic link regarding the crosstalk between non-genetic and genetic factors in KRAS driven tumors.
Purpose of review The purpose of this review is to highlight recent studies on mammalian sirtuins that coordinately regulate cellular metabolic homeostasis upon fasting and to summarize the beneficial effects of fasting on carcinogenesis and cancer therapy. Recent findings Recent studies have demonstrated that fasting may protect normal cells and mice from the metabolic conditions that are harmful as well as decrease the incidence of carcinogenesis. Fasting could also slow the tumor growth and augment the efficacy of certain systemic agents/chemotherapy drugs in various cancers. The mechanism behind this proposed idea may be due to, at least in some part, the metabolic regulation by sirtuin family proteins whose functions are involved in specific aspects of longevity, stress response and metabolism. Sirtuins, particularly SIRT1 and SIRT3, can be activated by fasting and further exhibit their effects in insulin response, antioxidant defense, and glycolysis. Therefore, sirtuins may have anticancer effects by shifting metabolism to a less proliferative cell phenotype as well as less prone to oxidative stress attack. Summary The in-depth understanding of the essential role of sirtuins in the fasting process may have significant implications in developing a new metabolic diagram of cancer prevention or treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.