Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.
Antimicrobial peptides have received increased attention due to the increasing prevalence of antibiotic‐resistant bacteria. However, the development of antimicrobial peptides for clinical applications remains a huge challenge. SPA ([D‐rg1, D‐Trp5,7,9, Leu11]SP), an analog of substance P, is a broad‐spectrum neuropeptide antagonist. In this study, we found that SPA could efficiently kill Gram‐positive and Gram‐negative bacteria by membrane disruption, similar to antimicrobial peptides. In addition, SPA showed high killing activity toward bacteria rather than mammalian cells. Our results also demonstrated that SPA could significantly decrease the expression of proinflammatory cytokines and rescue mice from lethal septic shock induced by lipopolysaccharide (LPS). The impressive therapeutic potential of SPA, as indicated in this study, makes it a good template for developing effective antibiotics. Meanwhile, our study provides a new idea for developing multifunctional therapeutic agents to combat bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.