The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.
The negative signal provided by interactions of programmed death-1 (PD-1) and its ligands, costimulatory molecules PD-L1 (also B7-H1) and PD-L2 (also B7-DC), is involved in the mechanisms of tumor immune evasion. In this study, we found that this negative signal was also involved in immune evasion in tumor immunotherapy. When we used different doses of a constructed eukaryotic expression plasmid, pSLC, which expresses functional murine secondary lymphoid tissue chemokine (SLC, CCL21), to treat BALB/c mice inoculated with H22 murine hepatoma cells, the inhibitory effect was enhanced along with the increase of pSLC dosage. Unexpectedly, however, the best complete inhibition rate of tumor was reached when pSLC was used at the dosage of 50 μg but not 100 or 200 μg. RT-PCR and real-time PCR revealed that both PD-L1 and PD-L2 genes were expressed in tumor and vicinal muscle tissues of tumor-bearing mice and the expression level was significantly increased if a higher dosage of pSLC was administered. We then constructed a eukaryotic expression plasmid (pPD-1A) that expresses the extracellular domain of murine PD-1 (sPD-1). sPD-1 could bind PD-1 ligands, block PD-Ls-PD-1 interactions, and enhance the cytotoxicity of tumor-specific CTL. Local gene transfer by injection of pPD-1A mediated antitumor effect and improved SLC-mediated antitumor immunity. The combined gene therapy with SLC plus sPD-1 did not induce remarkable autoimmune manifestations. Our findings provide a potent method of improving the antitumor effects of SLC and possibly other immunotherapeutic methods by local blockade of negative costimulatory molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.