The phosphatidylinositol-3-kinase (PI3K) / protein kinase B (AKT) signal transduction pathway is commonly misregulated in lymphoma and associated with tumorigenesis and enhanced resistance to radiotherapy. Curcumin has been shown to inhibit the PI3K/AKT signal transduction pathway in several tumor models. In this study, we found that curcumin inhibits constitutive and radiation-induced expression of the PI3K/AKT pathway and its downstream regulator nuclear factor kappaB (NF-κB) in human Burkitt's lymphoma, a high-grade non-Hodgkin's lymphoma (NHL). We further demonstrated that the blockage of radiation-induced activation of the PI3K/AKT pathway and its downstream regulator NF-κB by either curcumin or specific PI3/AKT inhibitors (LY294002 for PI3K or SH-5 for AKT) enhance apoptosis in three human Burkitt's lymphoma cell lines (Namalwa, Ramos, and Raji) that were treated with ionizing radiation. However, no synergic effect on radiation-induced apoptosis was found in the cells co-pretreated with curcumin combined with LY294002 or curcumin combined with SH-5. The results from this study suggest that curcumin might play an important role in radiotherapy of high-grade NHL through inhibition of the PI3K/AKT-dependent NF-κB pathway.
Objectives : PD-1 and PD-L1 overexpression in malignant tumors in response to radiotherapy is correlated with a poor prognosis. Human papilloma virus (HPV) infection impacts intrinsic radiosensitivity of head and neck cancers (HNCs). Herein, this study aims to determine PD-1/PD-L1 expression differences in tumors with different HPV statuses and their prognostic value in patients with different radiosensitivity gene signatures to define the characteristics of patients who will benefit from radiotherapy combined with anti-PD-1/PD-L1 therapy. Material and methods : According to the identified gene signature related to radiosensitivity, 517 patients from the TCGA HNSCC cohort were selected and divided into the radioresistant (RR) group and radiosensitive (RS) group using a K-mean clustering algorithm. All data analyses were conducted using SPSS and GraphPad Prism. Results : PD-L1 expression is upregulated in tumor tissue (unpaired t test, P=0.0363; paired t test, P=0.0584) compared with normal tissue. PD-L1 was positively correlated with PD-1 expression (P<0.0001). The HPV/p16-positive group was significantly high PD-1 expression (P<0.0001). PD-L1 expression (P=0.0005) and PD-1 expression (P<0.0001) were significantly increased in the RS group compared with that in the RR group. In the patients who were treated with radiotherapy, the PD-1-high group was associated with better recurrence-free survival (RFS) (HR, 0.4892; 95% CI, 0.2357-1.015; P=0.023). Within the RR group, high PD-L1 expression was associated with reduced overall survival (OS) (HR, 2.196; 95% CI, 1.081-4.46; P=0.0108) compared with low PD-L1 expression. In the RR group, HPV/p16-negative patients with high PD-L1 expression exhibited reduced OS (HPV: HR, 2.334; 95% CI, 0.7828-6.961; P=0.0313; p16: HR,2.486; 95% CI, 0.8559-7.219; P=0.0192) compared with that of patients with low PD-L1 expression. In the PD-L1-high group, RR patients exhibited reduced OS (HR, 0.4858; 95% CI, 0.2136-1.105; P=0.0189) and RFS (HR, 0.4371; 95% CI, 0.1421-1.345; P=0.0231) compared with that of RS patients. Conclusion : Our findings demonstrated that high PD-1/PD-L1 expression was strongly related to radiosensitivity, and high PD-1 expression was significantly associated with HPV/p16-positive HNCs. Patients in the radioresistant group and patients in the HPV/p16-negative group with a radioresistant gene signature could benefit from the combination of radiotherapy and anti-PD-1/PD-L1 therapy.
Background USP13 has been reported to be involved in the tumorigenesis of human cancers, however, its functional role and regulatory mechanisms in bladder cancer (BC) remain unclear. Methods q-RT-PCR was performed to examine the expression of miR-130b-3p, miR-301b-3p and USP13 in BC tissue samples. Western blot, q-RT-PCR, bioinformatic analysis and dual-luciferase reporter assay were conducted to identify the regulatory function of miR-130b-3p/301b-3p for USP13. Co-immunoprecipitation assay was performed to assess the interaction between USP13 and PTEN protein. Cell-counting-kit 8, colony formation assay and transwell assay were performed to value the proliferative, migrative and invasive capacities of BC cells in vitro. Mouse xenograft model of BC cells was established to verify the function of USP13 in vivo. Immunohistochemistry was performed to identify the protein expression of USP13, NF-kB p65 or PTEN in clinical/xenograft tumor tissues. Results Our present study reveals that USP13 functions as a tumor suppressor by interacting with PTEN protein and increasing its expression in bladder cancer. We found that loss of USP13 led to the downregulation of PTEN and promoted proliferative, invasive and migrative capacities of bladder cancer cells. Furthermore, we discovered that USP13 was a common target of miR-130b-3p and miR-301b-3p, and the miR-130b/301b cluster, which could be transcriptionally upregulated by NF-kB. Our data demonstrated that NF-kB activation decreased expression level of USP13 and PTEN, and promoted the tumorigenesis phenotypes of BC cells. In addition, reintroduction of USP13 partially rescued PTEN expression as well as the oncogenesis trend caused by NF-kB. Conclusion We reported a potential regulatory loop that the NF-kB-induced miR-130b/301b overexpression decreased USP13 expression and subsequently resulted in the downregulation of PTEN protein and promoted tumorigenesis of bladder cancer. Moreover, NF-kB-mediated PTEN downregulation is very likely to facilitate the full activation of NF-kB. Electronic supplementary material The online version of this article (10.1186/s13046-019-1262-4) contains supplementary material, which is available to authorized users.
Curcumin, a phenolic compound from the rhizomes of Curcuma longa, inhibits the growth of a variety of malignant cell types including lymphoma cells. We investigated the role of curcumin in modulating the response of Burkitt's lymphoma cells to ionizing radiation (IR) in vitro and explored the mechanisms that mediated this effect. We treated three Burkitt's lymphoma cell lines with vehicle, curcumin, IR, and curcumin in combination with IR. Cell viability, apoptosis, and cell cycle distribution were determined to ascertain the radiosensitization effect of curcumin. Nuclear factor-kappa B (NF-κB) activation was assessed by nuclear translocation of p65. Apoptosis-related proteins were monitored by western blot assay and real-time RT-PCR. Pretreatment of curcumin sensitized lymphoma cells to IR-induced apoptosis and increased G2/M phase arrest in the cell cycle distribution. Accordingly, the antiapoptotic Bcl-xL protein, cell cycle modulating protein CDC2, and cyclin B1 were downregulated by the curcumin treatment. IR activated NF-κB as evidenced by an increased nuclear p65 translocation and cytoplasmic IκBα expression. However, pretreatment with curcumin significantly decreased the nuclear translocation of p65 and cytoplasmic IκBα degradation. Survivin and hexokinase II, downstream effectors of NF-κB that mediate the antiapoptotic effect of NF-κB, were suppressed by the pretreatment of curcumin. These observations suggest that the activated NF-κB pathway plays a prosurvival role in Burkitt's lymphoma in response to IR. Curcumin blocks this pathway and has therapeutic potential for improving the antitumor effects of radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.