The measurement of glucose concentration in sweat is expected to replace the existing blood glucose detection, which realize the effective way of non-invasive monitoring of human glucose concentration in dancing. High precision glucose detection can be achieved by adjusting the electrode material of the sensor. Thus, in this work, the bimetallic organic frameworks (bi-MOFs) materials containing Mn and Ni ions (NiMn-MOF) with ultrathin nanosheets have been exquisitely designed. The ultrathin nanosheet and heterogeneous metal ions in the structure optimize the electronic structure, which improves the electrical conductivity of MOFs. The success of the preparation strategy leads the good electrocatalytic performance of NiMn-MOF for glucose detection. Detailedly, NiMn-MOF shows high sensitivity of 1576 μA mM−1 cm−2 in the linear range from 0 to 0.205 mM and the wide linear region of 0.255–2.655 mM and 3.655–5.655 mM were also observed. In addition, the high repeatability, reproductivity, long-term stability and ultra-low limited of detection (LOD, 0.28 μM, S/N = 3) provide foundation for the practical sensor application of this NiMn-MOF nanosheets. Remarkably, as designed NiMn-MOF sensor can accurately measure glucose in sweat showing great potential in the field of wearable glucose monitoring during dancing.
The measurement of glucose concentration in sweat is expected to replace the existing blood glucose detection, which realize the effective way of non-invasive monitoring of human glucose concentration during human sports. High precision glucose detection can be achieved by adjusting the electrode material of the sensor. Thus, in this work, the bimetallic organic frameworks (bi-MOFs) materials containing Mn and Ni ions (NiMn-MOF) with ultrathin nanosheets have been exquisitely designed. The ultrathin nanosheet and heterogeneous metal ions in the structure optimize the electronic structure, which improvs the electrical conductivity of MOFs. The success of the preparation strategy leads the good electrocatalytic performance of NiMn-MOF for glucose detection. Detailly, NiMn-MOF shows high sensitivity of 1576 μA mM-1 cm-2 in the linear rang from 0 to 0.205 mM and the wide linear region of 0.255-2.655 mM and 3.655-5.655 mM were also observe. In addition, the high repeatability, reproductivity, long-term stability and ultra-low limited of detection (LOD, 0.28 μM, S/N=3) provide foundation for the practical sensor application of this NiMn-MOF nanosheets. Remarkably, as designed NiMn-MOF sensor can accurately measure glucose concentration in sweat showing great potential in the field of wearable glucose monitoring during dancing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.