Cost-effective, efficacious therapeutics are urgently needed against the COVID-19 pandemic. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration and determined a structure of one of the most potent in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. We constructed multivalent Nb constructs that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization.
A chimeric oligonucleotide composed of DNA and modified RNA residues was used to direct correction of the mutation in the hemoglobin betaS allele. After introduction of the chimeric molecule into lymphoblastoid cells homozygous for the betaS mutation, there was a detectable level of gene conversion of the mutant allele to the normal sequence. The efficient and specific conversion directed by chimeric molecules may hold promise as a therapeutic method for the treatment of genetic diseases.
Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.
The number of publications in the field of chemical cross-linking
combined with mass spectrometry (XL-MS) to derive constraints for protein
three-dimensional structure modeling and to probe protein–protein
interactions has increased during the last years. As the technique is now
becoming routine for in vitro and in vivo applications in proteomics and
structural biology there is a pressing need to define protocols as well as data
analysis and reporting formats. Such consensus formats should become accepted in
the field and be shown to lead to reproducible results. This first,
community-based harmonization study on XL-MS is based on the results of 32
groups participating worldwide. The aim of this paper is to summarize the status
quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our
study therefore builds the framework for establishing best practice guidelines
to conduct cross-linking experiments, perform data analysis, and define
reporting formats with the ultimate goal of assisting scientists to generate
accurate and reproducible XL-MS results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.