We report here an injectable, self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic wound regeneration. The hydrogel was prepared by coordinative cross-linking of multi-arm thiolated polyethylene glycol (SH-PEG) with silver nitrate (AgNO3). Due to the dynamic nature of Ag-S coordination bond and bacteria-killing activity of Ag+, the resultant coordinative hydrogel featured self-healing, injectable and antibacterial properties. In this study, we synchronously loaded an angiogenic drug, desferrioxamine (DFO), in the coordinative hydrogel during cross-linking. We finally obtained a multifunctional hydrogel that is manageable, resistant to mechanical irritation, antibacterial and angiogenic in vitro. Our in vivo studies further demonstrated that the injectable self-healing hydrogel could efficiently repair diabetic skin wounds with low bacteria-infection and enhance angiogenic activity. In short, besides diabetic skin wound repair, such dynamic multifunctional hydrogel scaffolds would show great promise in the regeneration of different types of exposed wounds, in particular, in situations with disturbed physiological functions, high risk of bacterial infections, and external mechanical irritation.
Protein is the key composition of all tissues, which has also been widely used in tissue engineering due to its superior biocompatibility and low immunogenicity. However, natural protein usually lacks active functions such as vascularization, osteo‐induction, and neural differentiation, which limits its further applications as a functional biomaterial. Here, based on the mimetic extracellular matrix feature of bovine serum albumin, injectable polypeptide‐protein hydrogels with vascularization and antibacterial abilities are constructed successfully via coordinative cross‐linking of sulfydryl groups with silver ions (Ag+) for the regeneration of infected wound. In this protein hydrogel system, (Ag+), acting as crosslinkers, can not only provide a sterile microenvironment and a strong and robust antibacterial ability but also introduce K2(SL)6K2 (KK) polypeptide, which endows the hydrogel with vascularization behavior. Furthermore, the in vivo data show that the polypeptide‐protein hydrogel has a considerable collagen deposition and vascularization abilities in the early stage of wound healing, resulting in rapid new tissue regeneration featured with newly appeared hair follicles. Altogether, this newly developed multifunctional 3D polypeptide‐protein hydrogel with vascularization, antibacterial properties, and hair follicle promotion can be a promising approach in biomedical fields such as infected wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.