SummaryChina is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia‐Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi‐C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein‐coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism, which may account for the organism's considerable environmental adaptability. An alignment analysis of orthologous genes showed that fruit size, sugar metabolism and transport, and photosynthetic efficiency were positively selected in Oriental pear during domestication. A total of 573 nucleotide‐binding site (NBS)‐type resistance gene analogues (RGAs) were identified in the P. betuleafolia genome, 150 of which are TIR‐NBS‐LRR (TNL)‐type genes, which represented the greatest number of TNL‐type genes among the published Rosaceae genomes and explained the strong disease resistance of this wild species. The study of flavour metabolism‐related genes showed that the anthocyanidin reductase (ANR) metabolic pathway affected the astringency of pear fruit and that sorbitol transporter (SOT) transmembrane transport may be the main factor affecting the accumulation of soluble organic matter. This high‐quality P. betuleafolia genome provides a valuable resource for the utilization of wild pear in fundamental pear studies and breeding.
Simple sequence repeat (SSR) markers were used to assess genetic diversity and relationship of Pyrus L. cultivars native mainly to East Asia. A total of 168 putative alleles were generated from six primer-pairs (BGA35, KU10, BGT23b, NH004a, NH011b and NH015a). All the SSR markers showed a high level of genetic polymorphism with a mean of 28 putative alleles per locus and the heterozygosity of 0.63. The Dice's similarity coefficient between cultivars ranged from 0.02 to 0.98 and Occidental pears generally had low affinities to Asian pears. Ten major groups were generated from all the accessions by UPGMA clusters analysis. Chinese sand pears consisted of four groups with Chinese white pears and Japanese pears, of which Chinese sand pears occurred in all four groups, presenting a large genetic diversity, Chinese white pears were included in three groups, and Japanese pears only fell into one group. In the dendrogram, Chinese sand pears and Chinese white pears did not form discrete group, even subgroups. Some Japanese pear cultivars had high affinities to Chinese sand pear cultivars. These findings supports the authors' previous viewpoints of Chinese white pears as a variety or an ecotype of Chinese sand pears (P. pyrifolia var. sinensis (Lindley) Y. Teng et K. Tanabe) and the progenitor of Japanese pears coming from China. Cultivars of P. ussuriensis Maxim. were clustered together with one clone of P. hondoensis Nakai et Kikuchi, a relative species of P. ussuriensis. Cultivars of P. communis L. and other Occidental species formed three independent groups and were distant from most Asian pears, except for P. betulaefolia Bge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.