This paper presents a new type of joint for connecting steel beams with a concrete-filled double-skin steel tubular (CFDST) column. Four half-scale specimens of the joint with different specifications were constructed and tested under a constant axially compressive force with vertical low-reversal loads applied to the beam ends to examine their failure modes and hysteretic behaviors. The beam hinging mechanism of the joint was observed in the radian area of the horizontal end plates. The proposed connection was found to exhibit good energy dissipation capabilities with its limit rotation in the failure state reaching 0.05 rad, thus satisfying the FEMA-350 ductility requirement of ≥0.03 rad for seismic resistance. A finite element analysis (FEA) model of the joint was also established and validated by comparing its predictions with experimental results. The FEA model was used to investigate the effects of different parameters such as the stiffened height of the web anchorage plate, axial load level, steel and concrete strengths, steel ratio on the moment-rotation relationship, and initial stiffness of the connection. This paper presents some important design considerations of the connection, as well as aspects requiring further study.
is paper firstly studied the internal force transfer mechanism of vertical stiffener joints in concrete-filled double steel tubular (CFDST) frame structures on the basis of finite element modeling (FEM). Analytical models of shear force and bending moment were established through the appropriate material constitutive equations and equilibrium theory. en, the proposed models were used to predict and evaluate the shear and bending resistance of the vertical stiffener joint. Six joint specimens were tested to verify the rationality of the theoretical models, and the design suggestions for construction were subsequently discussed. e analysis indicated that the vertical stiffener together with the anchorage web played a dominated role in the internal force transfer mechanism. e computed bending resistance obtained by the tension model agreed well with the measured experimental data, and the shear resistance in the panel zone was sufficient to guarantee the ductile failure in the test. e vertical stiffener determined the plastic hinge so as to ensure the strong connection between the CFDST column and the steel beam. e ribbed anchorage web was an effective way of increasing the shear and bending resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.