Precipitation is a key component of the hydrological cycle, which is critical to understanding its formation and evolution. In this study, based on the observation data of the PWS100 located at the meteorological observation site at the terminal of Urumqi Glacier No. 1, eastern Tianshan Mountains, the statistical characteristics of the summer raindrop size distribution (DSD) were analyzed, and the DSD characteristics of five different rainfall rates(R) and two rainfall types (convective and stratiform) were investigated for the daytime and nighttime. The average raindrop spectral width was the largest in class III (1 < R < 5 mm h−1). The result showed that the raindrop concentration increased with the rainfall rate. The maximum raindrop concentration was at class IV (5 < R < 10 mm h−1), when the raindrop diameter was higher than 1.74 mm. The small and medium size raindrops played a dominant role in precipitation composition in the head watershed of the Urumqi River, contributing 98% of the total raindrop. The convective precipitation at the headwaters was divided into continental clusters. The stratiform/convective Dm-log10Nw was characterized by a large mass-weighted mean diameter Dm = 1.523/2.608, and a generalized intercept log10Nw = 2.841/3.469. N(D) of convective precipitation was significantly different between the daytime and nighttime, while that of stratiform precipitation was almost the same. The constraint relationship between R-Dm and R-log10Nw of these two precipitation types was deduced, the exponent of the R-log10Nw relationship of the two precipitation types was negative, and the Dm value of stratiform precipitation tended to be stable at a higher rainfall rate (1–2 mm). Finally, we deduced the power-law relationship between radar reflectivity (Z) and rain rate (R) [Z = A*Rb] for stratiform and convective precipitation at the headwaters. Z = 698.8R2.0 was for stratiform, and Z = 47.1R2.0 was for convective. These results, for the first time, offer insights into the microphysical nature of precipitation in the head watershed of the Urumqi River during the summer and provide essential information that could be useful for precipitation retrievals based on weather radar observations.
Glaciers are vital to water resources in the arid land of central Asia. Long-term runoff records in the glacierized area are particularly valuable in terms of evaluating glacier recession and water resource change on both a regional and global scale. The runoff records of streams draining basins with 46% current glacier cover, located at the Urumqi Glacier No. 1 in the source area of the Urumqi River in eastern Tianshan, central Asia, were examined for the purpose of assessing climatic and glacial influences on temporal patterns of streamflow for the period 1959–2018. Results suggest that runoff from the catchment correlates well with temperature and associated precipitation data. During the period 1993–2018, it increased by 114.39 × 104 m3, which was 1.7 times the average runoff during the period 1959–1992. A simple water balance model is introduced to calculate the different components of the runoff, including precipitation runoff from glacier surface and from nonglacial areas, glacier mass balance and glacial runoff. Thus, the long-term change of each component and its response to climate change are revealed. We found that the period 1997–2018 is likely to be the “peak water” (tipping point) of the glacial runoff resulting from shrinkage of glacier area.
Precipitation is a key process in the hydrologic cycle. However, accurate precipitation data are scarce in high mountainous areas, mainly restricted by complex topography, solid precipitation and sparse recording stations. In order to evaluate the quality of precipitation measurement, this study conducted a comparison campaign of precipitation measurements with the PWS100 laser sensor and the Geonor T-200B rain gauge for an entire year from 30 April 2018 to 1 May 2019 at an elevation of 3835 m in a nival glacial zone in eastern Tianshan, Central Asia. The results show that the daily precipitation values recorded by Geonor T-200B and PWS100 are well correlated and the annual precipitation amounts recorded by the two instruments differ by 7%, indicating good capabilities of both instruments in solid precipitation measurement. However, the amount of precipitation measured by Geonor T-200B was 36 mm lower in June to August and 120 mm higher in the remaining months compared with the values measured by PWS100. Our study indicated that Geonor T-200B is more efficient than PWS100 in terms of catching solid precipitation measurements. According to the PWS100 data, the experiment site was dominated by solid precipitation particles, accounting for 60% of total precipitation particles. Based on the precipitation particle and in-situ air temperature measurements, a set of temperature thresholds were established to discriminate rain, sleet and snow. The threshold temperature of rainfall and snowfall is −1.5 and 8 °C, respectively. When air temperature ranges from −1.5 to 8 °C, sleet occurs, meanwhile the ratio of rain to snow depends on air temperature.
Precipitation is one of the most important climatological data for global hydrothermal cycle and climate change. The accuracy of precipitation data not only directly affects the hydrological processes, but also plays an important role in the climate and hydrology at regional and global scales. According to the in situ datasets, the precipitation measurement in automatic weather stations for Geonor T-200B was corrected by the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE) transfer functions. The parameters of transfer functions were tested and recalibrated by the local datasets. The results showed that the transfer functions showed better performance after recalibrating parameters by the local datasets. The root-mean-square error (RMSE) and mean bias decreased by an average of 34% and 42%, respectively. The corrected snowfall increased by 7% (14 mm) at the test station. Then, the new parameters were used in other automatic weather stations to correct precipitation, and it was found that solid precipitation was underestimated by 13% on the glacier surface affected by wind speed. Moreover, according to the corrected precipitation datasets observed in automatic weather stations and national meteorological stations, the precipitation–altitude relationship in the Urumqi River Basin was analyzed. The annual precipitation gradient was 115 mm km-1, and the maximum seasonal altitude occurred in summer with a value of 35 mm km-1 and in autumn with the lowest value of 1 mm km-1. When considering precipitation on the glacier surface, the yearly precipitation gradient was increased with the value of 158 mm km -1 in 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.