This review provides insights on how enzymatic reactivity tricks such as redox-active ligands, entatic state reactivity, electron bifurcation, and quantum tunneling can benefit chemists in the design of bioinspired catalytic systems.
Copper catalysis finds applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is exploring the possibility of a complementing metal-centered reactivity with electronic participation by the coordination sphere. To achieve this electronic flexibility, redox-active ligands can be used to engage in a fruitful “electronic dialogue” with the metal center, and provide additional venues for electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands.
Small-molecule catalysts as mimics of biological systems illustrate the chemists' attempts at emulating the tantalizing abilities displayed by nature's metalloenzymes. Among these innate behaviors, spin multistate reactivity is used by biological systems as it offers thermodynamic leverage towards challenging chemical reactivity but this concept is difficult to translate into the realm of synthetic organometallic catalysis. Here, we report a rare example of molecular spin catalysis involving multistate reactivity in a small-molecule biomimetic copper catalyst applied to aziridination. This behavior is supported by spin state flexibility enabled by the redox-active ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.