Cancer specific inhibitors reflective of unique metabolic needs, are rare. We describe a novel small molecule, Gboxin, that specifically inhibits primary mouse and human glioblastoma (GBM) cell growth but not mouse embryo fibroblasts or neonatal astrocytes. Gboxin rapidly and irreversibly compromises GBM oxygen consumption. Reliant on its positive charge, Gboxin associates with mitochondrial oxidative phosphorylation complexes in a proton gradient dependent manner and inhibits F0F1 ATP synthase activity. Gboxin resistant cells require a functional mitochondrial permeability transition pore that regulates pH impeding matrix accumulation. Administration of a pharmacologically stable Gboxin analog inhibits GBM allografts and patient derived xenografts. Gboxin toxicity extends to established human cancer cell lines of diverse organ origin and exposes the elevated proton gradient pH in cancer cell mitochondria as a new mode of action for antitumor reagent development.
Chromatin modification is considered to be a fundamental mechanism of regulating gene expression to generate coordinated responses to environmental changes, however, whether it could be directly regulated by signals mediated by G protein-coupled receptors (GPCRs), the largest surface receptor family, is not known. Here, we show that stimulation of delta-opioid receptor, a member of the GPCR family, induces nuclear translocation of beta-arrestin 1 (betaarr1), which was previously known as a cytosolic regulator and scaffold of GPCR signaling. In response to receptor activation, betaarr1 translocates to the nucleus and is selectively enriched at specific promoters such as that of p27 and c-fos, where it facilitates the recruitment of histone acetyltransferase p300, resulting in enhanced local histone H4 acetylation and transcription of these genes. Our results reveal a novel function of betaarr1 as a cytoplasm-nucleus messenger in GPCR signaling and elucidate an epigenetic mechanism for direct GPCR signaling from cell membrane to the nucleus through signal-dependent histone modification.
Although itch sensation is an important protective mechanism for animals, chronic itch remains a challenging clinical problem. Itch processing has been studied extensively at the spinal level. However, how itch information is transmitted to the brain and what central circuits underlie the itch-induced scratching behavior remain largely unknown. We found that the spinoparabrachial pathway was activated during itch processing and that optogenetic suppression of this pathway impaired itch-induced scratching behaviors. Itch-mediating spinal neurons, which express the gastrin-releasing peptide receptor, are disynaptically connected to the parabrachial nucleus via glutamatergic spinal projection neurons. Blockade of synaptic output of glutamatergic neurons in the parabrachial nucleus suppressed pruritogen-induced scratching behavior. Thus, our studies reveal a central neural circuit that is critical for itch signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.