Many heterotrophic bacteria contain sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) genes. It is unclear how these enzymes cooperate to oxidise sulfide in bacteria. Cupriavidus pinatubonensis JMP134 contains a gene cluster of sqr and pdo, and their functions were analysed in Escherichia coli. Recombinant E. coli cells with SQR and PDO rapidly oxidised sulfide to thiosulfate and sulfite. The SQR also contains a DUF442 domain that was shown to have rhodanese activities. E. coli cells with PDO and SQR-C94S, an active site mutant of the rhodanese domain, oxidised sulfide to thiosulfate with transitory accumulation of polysulfides. Cellular and enzymatic evidence showed that DUF442 speeds up the reaction of polysulfides with glutathione to produce glutathione persulfide (GSSH). Thus, SQR oxidises sulfide to polysulfides; rhodanese enhances the reaction of polysulfides with glutathione to produce GSSH; PDO oxidises GSSH to sulfite; sulfite spontaneously reacts with polysulfides to generate thiosulfate. The pathway is different from the proposed mitochondrial pathway because it has polysulfides, that is, disulfide and trisulfide, as intermediates. The data demonstrated that heterotrophic bacteria with SQR and PDO can rapidly oxidise sulfide to thiosulfate and sulfite, providing the foundation for using heterotrophic bacteria with SQR and PDO for sulfide bioremediation.
Sulfide (H2S, HS− and S2−) oxidation to sulfite and thiosulfate by heterotrophic bacteria, using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO), has recently been reported as a possible detoxification mechanism for sulfide at high levels. Bioinformatic analysis revealed that the sqr and pdo genes were common in sequenced bacterial genomes, implying the sulfide oxidation may have other physiological functions. SQRs have previously been classified into six types. Here we grouped PDOs into three types and showed that some heterotrophic bacteria produced and released H2S from organic sulfur into the headspace during aerobic growth, and others, for example, Pseudomonas aeruginosa PAO1, with sqr and pdo did not release H2S. When the sqr and pdo genes were deleted, the mutants also released H2S. Both sulfide-oxidizing and non-oxidizing heterotrophic bacteria were readily isolated from various environmental samples. The sqr and pdo genes were also common in the published marine metagenomic and metatranscriptomic data, indicating that the genes are present and expressed. Thus, heterotrophic bacteria actively produce and consume sulfide when growing on organic compounds under aerobic conditions. Given their abundance on Earth, their contribution to the sulfur cycle should not be overlooked.
bSulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe 2؉ for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.
Background: Persulfide dioxygenases (PDOs), which belong to the metallo--lactamase (MBL) enzyme superfamily, oxidize glutathione persulfide (GSSH). Results: Crystal structures and ITC data provide information on ligand binding by PDOs. Conclusion: MBLs share conserved amino acid residues, but the functions of these residues vary by class. Significance: These results provide criteria for distinguishing PDOs from other MBL superfamily members.
Some heterotrophic bacteria are able to oxidize sulfide (H S, HS and S ) to sulfite and thiosulfate via polysulfide. The genes coding for the oxidation enzymes in Cupriavidus pinatubonensis JMP134 have recently been identified; however, their regulation is unknown. A regulator gene is adjacent to the operon of the sulfide-oxidizing genes, encoding a σ -dependent transcription factor (FisR) with three domains: an R domain, an AAA+ domain and a DNA-binding domain. Here it is reported that the regulator responds to the presence of sulfide and activates the sulfide-oxidizing genes. FisR binds to its cognate operator at -114 to -135 bp of the transcription start of the operon. When polysulfide reacts with the R domain of FisR through the three conserved cysteine residues (C53, C64 and C71), FisR activates the expression of the operon. FisR is highly sensitive to polysulfide, activating σ -dependent transcription of sulfide-oxidizing genes for sulfide removal. Further, sequence analysis indicates that FisR-type regulators are relatively common for controlling sulfide-oxidizing genes under sulfide stress in the Proteobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.