Segmentasi pelanggan pada perusahaan merupakan tindakan yang dapat mempermudah perusahaan dalam mengambil keputusan ke depan. Pada penelitian ini data yang digunakan berasal dari perusahaan otomotif, PT Hasjrat Abadi Ambon. Data yang dipakai terdiri dari data transaksi dan pelanggan kendaraan bermotor. Penerapan model RFM dapat mengelompokkan pelanggan-pelanggan berdasarkan nilai variabel Recency, Frequency dan Monetary. Hasil dari model RFM akan memperoleh status baru pada tiap pelanggan dari skala terbaik sampai terburuk. Pelanggan yang telah memiliki status akan dikelompokkan menggunakan metode K-Means menjadi beberapa Cluster(kelompok). Dalam menentukan jumlah Cluster yang optimal maka diterapkan metode Elbow. Algoritma yang digunakan dalam pembentukan Cluster terdiri dari Euclidean Distance dan Manhattan Distance. Kedua algoritma akan dibandingkan kualitas pembentukan Clusternya menggunakan metode Silhoutte Coefficient. Hasil yang diberikan pada penelitian ini berupa data yang terbagi atas 5 kelompok dengan dilakukannya lima kali pengujian untuk menentukan centroid yang unggul. Cluster yang unggul akan dibuatkan visualisasi datanya untuk memudahkan perusahaan dalam mengambil keputusan. Berdasarkan penerapan Silhoutte Coefficient, algoritma yang lebih unggul yaitu Manhattan Distance dengan nilai s(i) sebesar 0.152695. Customer segmentation at the company is an action that can facilitate the company in making decisions going forward. In this study the data used came from an automotive company, PT Hasjrat Abadi Ambon. The data used consists of transaction data and motor vehicle customers. The application of the RFM model can classify customers based on the value of the Recency, Frequency and Monetary variables. The results of the RFM model will obtain a new status on each customer from the best to the worst scale. Customers who already have status will be grouped using the K-Means method into several Clusters (groups). In determining the optimal number of Clusters, the Elbow method is applied. The algorithm used in Cluster formation consists of Euclidean Distance and Manhattan Distance. The two algorithms will be compared the quality of the Cluster formation using the Silhoutte Coefficient method. The results given in this study are in the form of data divided into 5 groups by conducting five tests to determine superior centroids. Excellent clusters will be made of data visualization to facilitate the company in making decisions. Based on the application of Silhoutte Coefficient, a superior algorithm is Manhattan Distance with value s(i) : 0.152695.
AbstrakKlasifiaksi berita hoaks merupakan salah satu aplikasi kategorisasi teks. Berita hoaks harus diklasifikasikan karena berita hoaks dapat mempengaruhi tindakan dan pola pikir pembaca. Dalam proses klasifikasi pada penelitian ini menggunakan beberapa tahapan yaitu praproses, ekstraksi fitur, seleksi fitur dan klasifikasi. Penelitian ini bertujuan membandingkan dua algoritma yaitu algoritma Naïve Bayes dan Multinomial Naïve Bayes, manakah dari kedua algoritma tersebut yang lebih efektif dalam mengklasifikasikan berita hoaks. Data yang digunakan dalam penelitian ini berasal dari www.trunbackhoax.id untuk data berita hoaks sebanyak 100 artikel dan data berita non-hoaks berasal dari kompas.com, detik.com berjumlah 100 artikel. Data latih berjumlah 140 artikel dan data uji berjumlah 60 artikel. Hasil perbandingan algoritma Naïve Bayes memiliki nilai F1-score sebesar 0,93 dan nilai F1-score Multinomial Naïve Bayes sebesar 0,92. Abstarct Classification hoax news is one of text categorizations applications. Hoax news must be classified because the hoax news can influence the reader actions and thinking patterns. Classification process in this reseacrh uses several stages, namely preprocessing, features extraxtion, features selection and classification. This research to compare Naïve Bayes algorithm and Multinomial Naïve Bayes algorithm, which of the two algorithms is more effective on classifying hoax news. The data from this research from turnbackhoax.id as hoax news of 100 articles and non-hoax news from kompas.com, detik.com of 100 articles. Training data 140 articles dan test data 60 articles. The result of the comparison of algorithms Naïve Bayes has an F1-score value of 0,93 and Naïve Bayes has an F1-score value of 0,92.
Abstrak Beberapa tahun belakangan ini, muncul perusahaan-perusahaan penyedia jasa transportasi yang menggunakan aplikasi berbasis android dalam proses pelayanannya atau biasa disebut dengan transportasi online. Hal ini dilakukan untuk meningkatkan pelayanan terhadap pengguna jasa transportasi. Hadirnya transportasi online seperti Gojek, Grab dan Uber menimbulkan masalah sosial antara supir transportasi online dan supir transportasi non aplikasi. Penyebabnya dikarenakan sebagian besar masyarakat beralih menggunakan transportasi online, sehingga pendapatan supir transportasi non aplikasi menurun. Pada penelitian ini, dilakukan analisa sentimen terhadap tweet berbahasa Indonesia tentang transportasi online dengan menggunakan metode pembobotan Hybrid TF-IDF dan kNN sebagai metode klasifikasinya. Hasil terbaik dari pengujian cross validation pada uji variable k adalah k=5 dengan nilai akurasi 70%, presisi kelas positif 68%, presisi kelas negatif 75%, recall kelas positif 82%, recall kelas negatif 59%, f-measur kelas positif 74% dan f-measure kelas negatif 65%.Abstract In recent years, there are same new companies which uses android applications in their service process or commonly called with online based transportation. This case do for improve their service to online based transportations customers. The presence of online based transportation like Gojek, Grab, and Uber inflict social problem between online based transportations drivers with non-aplication based transportations drivers. The is due to most of the people change over to online based transportation, so non-aplication based transportations drivers income decreased. In this research, sentiment analysis against Indonesian tweets about online based transportation by using Hybrid TF-IDF weighting method and kNN classification method. The best cross validation result on the test k variable are k=5 with accuracy value 70%, positive class precision 68%, negative class precision 75%, positive class recall 82%, negative class recall 59%, positive class f-measure 74%, and negatif class f-measure 65%.
Considering the problem of maternal and under-five mortality rates, and the high number of pregnancies at risk is not just a matter of the health world. The role of information technology that is developing very rapidly can be used as a solution to the problem of risky pregnancy. What's more, computers often change functions to turn off routine human work and decision making. Then to overcome this case two algorithms will be applied namely: (a) Decision Tree C5.0 Algorithm, (b) K-Medoids Clustering. Commercial Version 5.0 (C5.0) method for processing the analysis variables used. The use of C5.0 in this case is for attribute selection so that it produces very powerful features. After doing the selection of new data features will be grouped using K-Medoids for analysis so that they can be used as a reference for handling this case. The application of these two methods is also so that the decisions that are made later are more targeted to reduce or overcome the problem of high-risk maternal pregnancy. AbstrakMengingat permasalahan angka kematian ibu dan balita, dan tingginya angka kehamilan beresiko tidak hanya masalah dunia kesehatan saja. Peranan Teknologi informasi yang berkembang sangat pesat dapat dijadikan soluli terhadap permasalahan kehamilan beresiko. Terlebih lagi, computer sering kali berubah fungsi untuk mengatikan pekerjaan manusia yang bersifat rutinitas maupun pengambilan keputusan. Maka untuk mengatasi kasus ini akan diterapkan dua algoritma yaitu: (a) Algoritma Decision Tree C5.0, (b) K-Medoids Clustering. Metode Commercial Version 5.0 (C5.0) untuk mengolah variabel-variabel analisa yang digunakan. Penggunaan C5.0 pada kasus ini untuk melakukan seleksi atribut sehinga menghasilakan fitur yang sangat berpengauh. Setelah melalukan seleksi fitur data yang baru akan dikelompokkan menggunakan K-Medoids untuk di analisa agar dapat dijadikan acuan untuk penanganan pada kasus ini. Penerapan kedua metode ini juga agar keputusan yang nanti diambil lebih tepat sasaran untuk mengurangi atau mengatasi masalah kehamilan ibu yang beresiko tinggi.
AbstrakAbstrak - Kebutuhan pada jaringan mengutamakan performa untuk mendukung sebuah efisiensi jaringan merupakan hal penting untuk saat ini. Penentuan konfigurasi yang semakin banyak dan kompleks serta kontrol jaringan yang semakin rumit, membuat jaringan semakin tidak fleksibel dan susah untuk diterapkan pada sebuah topologi jaringan yang besar. Software Defined Network (SDN) muncul dengan mekanisme yang dapat menyelesaikan masalah tersebut. Pada dasarnya konsep dari Software Defined Network (SDN) adalah memisahkan kontroller dan data/forwarding plane, sehingga mampu untuk me-menejemen jaringan yang begitu banyak dalam sebuah kontroller. Namun pada kontroller belum memiliki keamanan yang cukup untuk melindungi dari serangan jaringan seperti DDoS, SYN Flooding Attack sehingga kontroller akan menjadi target dari attacker. Sehingga penelitian ini mengusulkan penambahan aplikasi machine learning pada kontroller untuk menangani serangan seperti DDoS dan SYN Flooding Attack. Dalam penelitian ini kontroller yang digunakan adalah ryu controller yang menggunakan bahasa pemrograman python. Dalam penelitian ini menggunakan topologi linear pada mininet dan membuat paket dalam format .pcap untuk pengujian serangan yang dilakukan. Sehingga dapat mengetahui rata-rata jumlah paket yang masuk dan keluar dan keberhasilan dalam melakukan mitigasi terhadap paket yang dianggap DDoS.Abstract The need for the network to prioritize performance to support a network efficiency is important for now. Determination of configurations that are more and more complex and increasingly complicated network control, makes the network more inflexible and difficult to apply to a large network topology. Software Defined Network (SDN) appears with a mechanism that can solve the problem. Basically the concept of Software Defined Network (SDN) is to separate the controller and the data / forwarding plane, so that it is able to manage so many networks in a controller. But the controller does not have enough security to protect against network attacks such as DDoS, SYN Flooding Attack so the controller will be the target of the attacker. So this study proposes adding machine learning applications to controllers to handle attacks such as DDoS and SYN Flooding Attack. In this study the controller used is the Ryu controller that uses the Python programming language. In this study using a linear topology on Mininet and create a package in. Pcap format for testing attacks carried out. So as to know the average number of incoming and outgoing packages and success in mitigating packages that are considered DDoS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.